keychron_qmk_firmware/docs/feature_pointing_device.md
2023-04-26 16:32:15 +08:00

52 KiB

Pointing Device :id=pointing-device

Pointing Device is a generic name for a feature intended to be generic: moving the system pointer around. There are certainly other options for it - like mousekeys - but this aims to be easily modifiable and hardware driven. You can implement custom keys to control functionality, or you can gather information from other peripherals and insert it directly here - let QMK handle the processing for you.

To enable Pointing Device, add the following line in your rules.mk and specify one of the driver options below.

POINTING_DEVICE_ENABLE = yes

Sensor Drivers

There are a number of sensors that are supported by default. Note that only one sensor can be enabled by POINTING_DEVICE_DRIVER at a time. If you need to enable more than one sensor, then you need to implement it manually, using the custom driver.

ADNS 5050 Sensor

To use the ADNS 5050 sensor, add this to your rules.mk

POINTING_DEVICE_DRIVER = adns5050

The ADNS 5050 sensor uses a serial type protocol for communication, and requires an additional light source.

Setting Description Default
ADNS5050_SCLK_PIN (Required) The pin connected to the clock pin of the sensor. POINTING_DEVICE_SCLK_PIN
ADNS5050_SDIO_PIN (Required) The pin connected to the data pin of the sensor. POINTING_DEVICE_SDIO_PIN
ADNS5050_CS_PIN (Required) The pin connected to the Chip Select pin of the sensor. POINTING_DEVICE_CS_PIN

The CPI range is 125-1375, in increments of 125. Defaults to 500 CPI.

ADNS 9800 Sensor

To use the ADNS 9800 sensor, add this to your rules.mk

POINTING_DEVICE_DRIVER = adns9800

The ADNS 9800 is an SPI driven optical sensor, that uses laser output for surface tracking.

Setting Description Default
ADNS9800_CLOCK_SPEED (Optional) Sets the clock speed that the sensor runs at. 2000000
ADNS9800_SPI_LSBFIRST (Optional) Sets the Least/Most Significant Byte First setting for SPI. false
ADNS9800_SPI_MODE (Optional) Sets the SPI Mode for the sensor. 3
ADNS9800_SPI_DIVISOR (Optional) Sets the SPI Divisor used for SPI communication. varies
ADNS9800_CS_PIN (Required) Sets the Chip Select pin connected to the sensor. POINTING_DEVICE_CS_PIN

The CPI range is 800-8200, in increments of 200. Defaults to 1800 CPI.

Analog Joystick

To use an analog joystick to control the pointer, add this to your rules.mk

POINTING_DEVICE_DRIVER = analog_joystick

The Analog Joystick is an analog (ADC) driven sensor. There are a variety of joysticks that you can use for this.

Setting Description Default
ANALOG_JOYSTICK_X_AXIS_PIN (Required) The pin used for the vertical/X axis. not defined
ANALOG_JOYSTICK_Y_AXIS_PIN (Required) The pin used for the horizontal/Y axis. not defined
ANALOG_JOYSTICK_AXIS_MIN (Optional) Sets the lower range to be considered movement. 0
ANALOG_JOYSTICK_AXIS_MAX (Optional) Sets the upper range to be considered movement. 1023
ANALOG_JOYSTICK_SPEED_REGULATOR (Optional) The divisor used to slow down movement. (lower makes it faster) 20
ANALOG_JOYSTICK_READ_INTERVAL (Optional) The interval in milliseconds between reads. 10
ANALOG_JOYSTICK_SPEED_MAX (Optional) The maximum value used for motion. 2
ANALOG_JOYSTICK_CLICK_PIN (Optional) The pin wired up to the press switch of the analog stick. not defined

Cirque Trackpad

To use the Cirque Trackpad sensor, add this to your rules.mk:

POINTING_DEVICE_DRIVER = cirque_pinnacle_i2c

or

POINTING_DEVICE_DRIVER = cirque_pinnacle_spi

This supports the Cirque Pinnacle 1CA027 Touch Controller, which is used in the TM040040, TM035035 and the TM023023 trackpads. These are I2C or SPI compatible, and both configurations are supported.

Common settings

Setting Description Default
CIRQUE_PINNACLE_DIAMETER_MM (Optional) Diameter of the trackpad sensor in millimeters. 40
CIRQUE_PINNACLE_ATTENUATION (Optional) Sets the attenuation of the sensor data. EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_4X
CIRQUE_PINNACLE_CURVED_OVERLAY (Optional) Applies settings tuned for curved overlay. not defined
CIRQUE_PINNACLE_POSITION_MODE (Optional) Mode of operation. not defined

CIRQUE_PINNACLE_ATTENUATION is a measure of how much data is suppressed in regards to sensitivity. The higher the attenuation, the less sensitive the touchpad will be.

Default attenuation is set to 4X, although if you are using a thicker overlay (such as the curved overlay) you will want a lower attenuation such as 2X. The possible values are:

  • EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_4X: Least sensitive
  • EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_3X
  • EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_2X
  • EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_1X: Most sensitive

CIRQUE_PINNACLE_POSITION_MODE can be CIRQUE_PINNACLE_ABSOLUTE_MODE or CIRQUE_PINNACLE_RELATIVE_MODE. Modes differ in supported features/gestures.

  • CIRQUE_PINNACLE_ABSOLUTE_MODE: Reports absolute x, y, z (touch pressure) coordinates and up to 5 hw buttons connected to the trackpad
  • CIRQUE_PINNACLE_RELATIVE_MODE: Reports x/y deltas, scroll and up to 3 buttons (2 of them can be from taps, see gestures) connected to trackpad. Supports taps on secondary side of split. Saves about 2k of flash compared to absolute mode with all features.
I2C Setting Description Default
CIRQUE_PINNACLE_ADDR (Required) Sets the I2C Address for the Cirque Trackpad 0x2A
CIRQUE_PINNACLE_TIMEOUT (Optional) The timeout for i2c communication with the trackpad in milliseconds. 20
SPI Setting Description Default
CIRQUE_PINNACLE_CLOCK_SPEED (Optional) Sets the clock speed that the sensor runs at. 1000000
CIRQUE_PINNACLE_SPI_LSBFIRST (Optional) Sets the Least/Most Significant Byte First setting for SPI. false
CIRQUE_PINNACLE_SPI_MODE (Optional) Sets the SPI Mode for the sensor. 1
CIRQUE_PINNACLE_SPI_DIVISOR (Optional) Sets the SPI Divisor used for SPI communication. varies
CIRQUE_PINNACLE_SPI_CS_PIN (Required) Sets the Chip Select pin connected to the sensor. POINTING_DEVICE_CS_PIN

Default Scaling is 1024. Actual CPI depends on trackpad diameter.

Also see the POINTING_DEVICE_TASK_THROTTLE_MS, which defaults to 10ms when using Cirque Pinnacle, which matches the internal update rate of the position registers (in standard configuration). Advanced configuration for pen/stylus usage might require lower values.

Absolute mode settings

Setting Description Default
CIRQUE_PINNACLE_X_LOWER (Optional) The minimum reachable X value on the sensor. 127
CIRQUE_PINNACLE_X_UPPER (Optional) The maximum reachable X value on the sensor. 1919
CIRQUE_PINNACLE_Y_LOWER (Optional) The minimum reachable Y value on the sensor. 63
CIRQUE_PINNACLE_Y_UPPER (Optional) The maximum reachable Y value on the sensor. 1471

Absolute mode gestures

Gesture Setting Description Default
CIRQUE_PINNACLE_TAP_ENABLE (Optional) Enable tap to click. This currently only works on the master side. not defined
CIRQUE_PINNACLE_TAPPING_TERM (Optional) Length of time that a touch can be to be considered a tap. TAPPING_TERM/200
CIRQUE_PINNACLE_TOUCH_DEBOUNCE (Optional) Length of time that a touch can be to be considered a tap. TAPPING_TERM/200

POINTING_DEVICE_GESTURES_SCROLL_ENABLE in this mode enables circular scroll. Touch originating in outer ring can trigger scroll by moving along the perimeter. Near side triggers vertical scroll and far side triggers horizontal scroll.

Additionally, POINTING_DEVICE_GESTURES_CURSOR_GLIDE_ENABLE is supported in this mode.

Relative mode gestures

Gesture Setting Description Default
CIRQUE_PINNACLE_TAP_ENABLE (Optional) Enable tap to "left click". Works on both sides of a split keyboard. not defined
CIRQUE_PINNACLE_SECONDARY_TAP_ENABLE (Optional) Tap in upper right corner (half of the finger needs to be outside of the trackpad) of the trackpad will result in "right click". CIRQUE_PINNACLE_TAP_ENABLE must be enabled. not defined

Tapping term and debounce are not configurable in this mode since it's handled by trackpad internally.

POINTING_DEVICE_GESTURES_SCROLL_ENABLE in this mode enables side scroll. Touch originating on the right side can trigger vertical scroll (IntelliSense trackpad style).

PAW 3204 Sensor

To use the paw 3204 sensor, add this to your rules.mk

POINTING_DEVICE_DRIVER = paw3204

The paw 3204 sensor uses a serial type protocol for communication, and requires an additional light source.

Setting Description Default
PAW3204_SCLK_PIN (Required) The pin connected to the clock pin of the sensor. POINTING_DEVICE_SCLK_PIN
PAW3204_SDIO_PIN (Required) The pin connected to the data pin of the sensor. POINTING_DEVICE_SDIO_PIN

The CPI range is 400-1600, with supported values of (400, 500, 600, 800, 1000, 1200 and 1600). Defaults to 1000 CPI.

Pimoroni Trackball

To use the Pimoroni Trackball module, add this to your rules.mk:

POINTING_DEVICE_DRIVER = pimoroni_trackball

The Pimoroni Trackball module is a I2C based breakout board with an RGB enable trackball.

Setting Description Default
PIMORONI_TRACKBALL_ADDRESS (Required) Sets the I2C Address for the Pimoroni Trackball. 0x0A
PIMORONI_TRACKBALL_TIMEOUT (Optional) The timeout for i2c communication with the trackball in milliseconds. 100
PIMORONI_TRACKBALL_SCALE (Optional) The multiplier used to generate reports from the sensor. 5
PIMORONI_TRACKBALL_DEBOUNCE_CYCLES (Optional) The number of scan cycles used for debouncing on the ball press. 20
PIMORONI_TRACKBALL_ERROR_COUNT (Optional) Specifies the number of read/write errors until the sensor is disabled. 10

PMW 3360 and PMW 3389 Sensor

This drivers supports both the PMW 3360 and PMW 3389 sensor as well as multiple sensors of the same type per controller, so 2 can be attached at the same side for split keyboards (or unsplit keyboards).

To use the PMW 3360 sensor, add this to your rules.mk

POINTING_DEVICE_DRIVER = pmw3360

The CPI range is 100-12000, in increments of 100. Defaults to 1600 CPI.

To use the PMW 3389 sensor, add this to your rules.mk

POINTING_DEVICE_DRIVER = pmw3389

The CPI range is 50-16000, in increments of 50. Defaults to 2000 CPI.

Both PMW 3360 and PMW 3389 are SPI driven optical sensors, that use a built in IR LED for surface tracking. If you have different CS wiring on each half you can use PMW33XX_CS_PIN_RIGHT or PMW33XX_CS_PINS_RIGHT in combination with PMW33XX_CS_PIN or PMW33XX_CS_PINS to configure both sides independently. If _RIGHT values aren't provided, they default to be the same as the left ones.

Setting Description Default
PMW33XX_CS_PIN (Required) Sets the Chip Select pin connected to the sensor. POINTING_DEVICE_CS_PIN
PMW33XX_CS_PINS (Alternative) Sets the Chip Select pins connected to multiple sensors. {PMW33XX_CS_PIN}
PMW33XX_CS_PIN_RIGHT (Optional) Sets the Chip Select pin connected to the sensor on the right half. PMW33XX_CS_PIN
PMW33XX_CS_PINS_RIGHT (Optional) Sets the Chip Select pins connected to multiple sensors on the right half. {PMW33XX_CS_PIN_RIGHT}
PMW33XX_CPI (Optional) Sets counts per inch sensitivity of the sensor. varies
PMW33XX_CLOCK_SPEED (Optional) Sets the clock speed that the sensor runs at. 2000000
PMW33XX_SPI_DIVISOR (Optional) Sets the SPI Divisor used for SPI communication. varies
PMW33XX_LIFTOFF_DISTANCE (Optional) Sets the lift off distance at run time 0x02
ROTATIONAL_TRANSFORM_ANGLE (Optional) Allows for the sensor data to be rotated +/- 127 degrees directly in the sensor. 0

To use multiple sensors, instead of setting PMW33XX_CS_PIN you need to set PMW33XX_CS_PINS and also handle and merge the read from this sensor in user code. Note that different (per sensor) values of CPI, speed liftoff, rotational angle or flipping of X/Y is not currently supported.

// in config.h:
#define PMW33XX_CS_PINS { B5, B6 }
// in keyboard.c:
#ifdef POINTING_DEVICE_ENABLE
void pointing_device_init_kb(void) {
    pmw33xx_init(1);         // index 1 is the second device.
    pmw33xx_set_cpi(0, 800); // applies to first sensor
    pmw33xx_set_cpi(1, 800); // applies to second sensor
    pointing_device_init_user();
}

// Contains report from sensor #0 already, need to merge in from sensor #1
report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {
    pmw33xx_report_t report = pmw33xx_read_burst(1);
    if (!report.motion.b.is_lifted && report.motion.b.is_motion) {
// From quantum/pointing_device_drivers.c
#define constrain_hid(amt) ((amt) < -127 ? -127 : ((amt) > 127 ? 127 : (amt)))
        mouse_report.x = constrain_hid(mouse_report.x + report.delta_x);
        mouse_report.y = constrain_hid(mouse_report.y + report.delta_y);
    }
    return pointing_device_task_user(mouse_report);
}
#endif

Custom Driver

If you have a sensor type that isn't supported above, a custom option is available by adding the following to your rules.mk

POINTING_DEVICE_DRIVER = custom

Using the custom driver will require implementing the following functions:

void           pointing_device_driver_init(void) {}
report_mouse_t pointing_device_driver_get_report(report_mouse_t mouse_report) { return mouse_report; }
uint16_t       pointing_device_driver_get_cpi(void) { return 0; }
void           pointing_device_driver_set_cpi(uint16_t cpi) {}

!> Ideally, new sensor hardware should be added to drivers/sensors/ and quantum/pointing_device_drivers.c, but there may be cases where it's very specific to the hardware. So these functions are provided, just in case.

Common Configuration

Setting Description Default
MOUSE_EXTENDED_REPORT (Optional) Enables support for extended mouse reports. (-32767 to 32767, instead of just -127 to 127). not defined
POINTING_DEVICE_ROTATION_90 (Optional) Rotates the X and Y data by 90 degrees. not defined
POINTING_DEVICE_ROTATION_180 (Optional) Rotates the X and Y data by 180 degrees. not defined
POINTING_DEVICE_ROTATION_270 (Optional) Rotates the X and Y data by 270 degrees. not defined
POINTING_DEVICE_INVERT_X (Optional) Inverts the X axis report. not defined
POINTING_DEVICE_INVERT_Y (Optional) Inverts the Y axis report. not defined
POINTING_DEVICE_MOTION_PIN (Optional) If supported, will only read from sensor if pin is active. not defined
POINTING_DEVICE_MOTION_PIN_ACTIVE_LOW (Optional) If defined then the motion pin is active-low. varies
POINTING_DEVICE_TASK_THROTTLE_MS (Optional) Limits the frequency that the sensor is polled for motion. not defined
POINTING_DEVICE_GESTURES_CURSOR_GLIDE_ENABLE (Optional) Enable inertial cursor. Cursor continues moving after a flick gesture and slows down by kinetic friction. not defined
POINTING_DEVICE_GESTURES_SCROLL_ENABLE (Optional) Enable scroll gesture. The gesture that activates the scroll is device dependent. not defined
POINTING_DEVICE_CS_PIN (Optional) Provides a default CS pin, useful for supporting multiple sensor configs. not defined
POINTING_DEVICE_SDIO_PIN (Optional) Provides a default SDIO pin, useful for supporting multiple sensor configs. not defined
POINTING_DEVICE_SCLK_PIN (Optional) Provides a default SCLK pin, useful for supporting multiple sensor configs. not defined

!> When using SPLIT_POINTING_ENABLE the POINTING_DEVICE_MOTION_PIN functionality is not supported and POINTING_DEVICE_TASK_THROTTLE_MS will default to 1. Increasing this value will increase transport performance at the cost of possible mouse responsiveness.

The POINTING_DEVICE_CS_PIN, POINTING_DEVICE_SDIO_PIN, and POINTING_DEVICE_SCLK_PIN provide a convenient way to define a single pin that can be used for an interchangeable sensor config. This allows you to have a single config, without defining each device. Each sensor allows for this to be overridden with their own defines.

!> Any pointing device with a lift/contact status can integrate inertial cursor feature into its driver, controlled by POINTING_DEVICE_GESTURES_CURSOR_GLIDE_ENABLE. e.g. PMW3360 can use Lift_Stat from Motion register. Note that POINTING_DEVICE_MOTION_PIN cannot be used with this feature; continuous polling of get_report() is needed to generate glide reports.

Split Keyboard Configuration

The following configuration options are only available when using SPLIT_POINTING_ENABLE see data sync options. The rotation and invert *_RIGHT options are only used with POINTING_DEVICE_COMBINED. If using POINTING_DEVICE_LEFT or POINTING_DEVICE_RIGHT use the common configuration above to configure your pointing device.

Setting Description Default
POINTING_DEVICE_LEFT Pointing device on the left side (Required - pick one only) not defined
POINTING_DEVICE_RIGHT Pointing device on the right side (Required - pick one only) not defined
POINTING_DEVICE_COMBINED Pointing device on both sides (Required - pick one only) not defined
POINTING_DEVICE_ROTATION_90_RIGHT (Optional) Rotates the X and Y data by 90 degrees. not defined
POINTING_DEVICE_ROTATION_180_RIGHT (Optional) Rotates the X and Y data by 180 degrees. not defined
POINTING_DEVICE_ROTATION_270_RIGHT (Optional) Rotates the X and Y data by 270 degrees. not defined
POINTING_DEVICE_INVERT_X_RIGHT (Optional) Inverts the X axis report. not defined
POINTING_DEVICE_INVERT_Y_RIGHT (Optional) Inverts the Y axis report. not defined

!> If there is a _RIGHT configuration option or callback, the common configuration option will work for the left. For correct left/right detection you should setup a handedness option, EE_HANDS is usually a good option for an existing board that doesn't do handedness by hardware.

Callbacks and Functions

Function Description
pointing_device_init_kb(void) Callback to allow for keyboard level initialization. Useful for additional hardware sensors.
pointing_device_init_user(void) Callback to allow for user level initialization. Useful for additional hardware sensors.
pointing_device_task_kb(mouse_report) Callback that sends sensor data, so keyboard code can intercept and modify the data. Returns a mouse report.
pointing_device_task_user(mouse_report) Callback that sends sensor data, so user code can intercept and modify the data. Returns a mouse report.
pointing_device_handle_buttons(buttons, pressed, button) Callback to handle hardware button presses. Returns a uint8_t.
pointing_device_get_cpi(void) Gets the current CPI/DPI setting from the sensor, if supported.
pointing_device_set_cpi(uint16_t) Sets the CPI/DPI, if supported.
pointing_device_get_report(void) Returns the current mouse report (as a report_mouse_t data structure).
pointing_device_set_report(mouse_report) Sets the mouse report to the assigned report_mouse_t data structured passed to the function.
pointing_device_send(void) Sends the current mouse report to the host system. Function can be replaced.
has_mouse_report_changed(new_report, old_report) Compares the old and new report_mouse_t data and returns true only if it has changed.
pointing_device_adjust_by_defines(mouse_report) Applies rotations and invert configurations to a raw mouse report.

Split Keyboard Callbacks and Functions

The combined functions below are only available when using SPLIT_POINTING_ENABLE and POINTING_DEVICE_COMBINED. The 2 callbacks pointing_device_task_combined_* replace the single sided equivalents above. See the combined pointing devices example

Function Description
pointing_device_set_shared_report(mouse_report) Sets the shared mouse report to the assigned report_mouse_t data structured passed to the function.
pointing_device_set_cpi_on_side(bool, uint16_t) Sets the CPI/DPI of one side, if supported. Passing true will set the left and false the right
pointing_device_combine_reports(left_report, right_report) Returns a combined mouse_report of left_report and right_report (as a report_mouse_t data structure)
pointing_device_task_combined_kb(left_report, right_report) Callback, so keyboard code can intercept and modify the data. Returns a combined mouse report.
pointing_device_task_combined_user(left_report, right_report) Callback, so user code can intercept and modify. Returns a combined mouse report using pointing_device_combine_reports
pointing_device_adjust_by_defines_right(mouse_report) Applies right side rotations and invert configurations to a raw mouse report.

Manipulating Mouse Reports

The report_mouse_t (here "mouseReport") has the following properties:

  • mouseReport.x - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing movement (+ to the right, - to the left) on the x axis.
  • mouseReport.y - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing movement (+ upward, - downward) on the y axis.
  • mouseReport.v - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing vertical scrolling (+ upward, - downward).
  • mouseReport.h - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing horizontal scrolling (+ right, - left).
  • mouseReport.buttons - this is a uint8_t in which all 8 bits are used. These bits represent the mouse button state - bit 0 is mouse button 1, and bit 7 is mouse button 8.

To manually manipulate the mouse reports outside of the pointing_device_task_* functions, you can use:

  • pointing_device_get_report() - Returns the current report_mouse_t that represents the information sent to the host computer
  • pointing_device_set_report(report_mouse_t mouse_report) - Overrides and saves the report_mouse_t to be sent to the host computer
  • pointing_device_send() - Sends the mouse report to the host and zeroes out the report.

When the mouse report is sent, the x, y, v, and h values are set to 0 (this is done in pointing_device_send(), which can be overridden to avoid this behavior). This way, button states persist, but movement will only occur once. For further customization, both pointing_device_init and pointing_device_task can be overridden.

Additionally, by default, pointing_device_send() will only send a report when the report has actually changed. This prevents it from continuously sending mouse reports, which will keep the host system awake. This behavior can be changed by creating your own pointing_device_send() function.

Also, you use the has_mouse_report_changed(new_report, old_report) function to check to see if the report has changed.

Examples

Custom Mouse Keycode

In this example, a custom key is used to click the mouse and scroll 127 units vertically and horizontally, then undo all of that when released - because that's a totally useful function.

case MS_SPECIAL:
    report_mouse_t currentReport = pointing_device_get_report();
    if (record->event.pressed) {
        currentReport.v = 127;
        currentReport.h = 127;
        currentReport.buttons |= MOUSE_BTN1;  // this is defined in report.h
    } else {
        currentReport.v = -127;
        currentReport.h = -127;
        currentReport.buttons &= ~MOUSE_BTN1;
    }
    pointing_device_set_report(currentReport);
    pointing_device_send();
    break;

Recall that the mouse report is set to zero (except the buttons) whenever it is sent, so the scrolling would only occur once in each case.

Drag Scroll or Mouse Scroll

A very common implementation is to use the mouse movement to scroll instead of moving the cursor on the system. This uses the pointing_device_task_user callback to intercept and modify the mouse report before it's sent to the host system.

enum custom_keycodes {
    DRAG_SCROLL = SAFE_RANGE,
};

bool set_scrolling = false;

report_mouse_t pointing_device_task_user(report_mouse_t mouse_report) {
    if (set_scrolling) {
        mouse_report.h = mouse_report.x;
        mouse_report.v = mouse_report.y;
        mouse_report.x = 0;
        mouse_report.y = 0;
    }
    return mouse_report;
}

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
    if (keycode == DRAG_SCROLL && record->event.pressed) {
        set_scrolling = !set_scrolling;
    }
    return true;
}

This allows you to toggle between scrolling and cursor movement by pressing the DRAG_SCROLL key.

Split Examples

The following examples make use the SPLIT_POINTING_ENABLE functionality and show how to manipulate the mouse report for a scrolling mode.

Single Pointing Device

The following example will work with either POINTING_DEVICE_LEFT or POINTING_DEVICE_RIGHT and enables scrolling mode while on a particular layer.


static bool scrolling_mode = false;

layer_state_t layer_state_set_user(layer_state_t state) {
    switch (get_highest_layer(state)) {
        case _RAISE:  // If we're on the _RAISE layer enable scrolling mode
            scrolling_mode = true;
            pointing_device_set_cpi(2000);
            break;
        default:
            if (scrolling_mode) {  // check if we were scrolling before and set disable if so
                scrolling_mode = false;
                pointing_device_set_cpi(8000);
            }
            break;
    }
    return state;
}

report_mouse_t pointing_device_task_user(report_mouse_t mouse_report) {
    if (scrolling_mode) {
        mouse_report.h = mouse_report.x;
        mouse_report.v = mouse_report.y;
        mouse_report.x = 0;
        mouse_report.y = 0;
    }
    return mouse_report;
}

Combined Pointing Devices

The following example requires POINTING_DEVICE_COMBINED and sets the left side pointing device to scroll only.

void keyboard_post_init_user(void) {
    pointing_device_set_cpi_on_side(true, 1000); //Set cpi on left side to a low value for slower scrolling.
    pointing_device_set_cpi_on_side(false, 8000); //Set cpi on right side to a reasonable value for mousing.
}

report_mouse_t pointing_device_task_combined_user(report_mouse_t left_report, report_mouse_t right_report) {
    left_report.h = left_report.x;
    left_report.v = left_report.y;
    left_report.x = 0;
    left_report.y = 0;
    return pointing_device_combine_reports(left_report, right_report);
}

Troubleshooting

If you are having issues with pointing device drivers debug messages can be enabled that will give you insights in the inner workings. To enable these add to your keyboards config.h file:

#define POINTING_DEVICE_DEBUG

?> The messages will be printed out to the CONSOLE output. For additional information, refer to Debugging/Troubleshooting QMK.


Automatic Mouse Layer :id=pointing-device-auto-mouse

When using a pointing device combined with a keyboard the mouse buttons are often kept on a separate layer from the default keyboard layer, which requires pressing or holding a key to change layers before using the mouse. To make this easier and more efficient an additional pointing device feature may be enabled that will automatically activate a target layer as soon as the pointing device is active (in motion, mouse button pressed etc.) and deactivate the target layer after a set time.

Additionally if any key that is defined as a mouse key is pressed then the layer will be held as long as the key is pressed and the timer will be reset on key release. When a non-mouse key is pressed then the layer is deactivated early (with some exceptions see below). Mod, mod tap, and one shot mod keys are ignored (i.e. don't hold or activate layer but do not deactivate the layer either) when sending a modifier keycode (e.g. hold for mod tap) allowing for mod keys to be used with the mouse without activating the target layer when typing.

All of the standard layer keys (tap toggling, toggle, toggle on, one_shot, layer tap, layer mod) that activate the current target layer are uniquely handled to ensure they behave as expected (see layer key table below). The target layer that can be changed at any point during by calling the set_auto_mouse_layer(<new_target_layer>); function.

Behaviour of Layer keys that activate the target layer

Layer key as in keymap.c Auto Mouse specific behaviour
MO(<target_layer>) Treated as a mouse key holding the layer while pressed
LT(<target_layer>) When tapped will be treated as non mouse key and mouse key when held
LM(<target_layer>) Treated as a mouse key
TG(<target_layer>) Will set flag preventing target layer deactivation or removal until pressed again
TO(<target_layer>) Same as TG(<target_layer>)
TT(<target_layer>) Treated as a mouse key when tap.count < TAPPING_TOGGLE and as TG when tap.count == TAPPING_TOGGLE
DF(<target_layer>) Skips auto mouse key processing similar to mod keys
OSL(<target_layer>) Skips, but if current one shot layer is the target layer then it will prevent target layer deactivation or removal

How to enable:

// in config.h:
#define POINTING_DEVICE_AUTO_MOUSE_ENABLE
// only required if not setting mouse layer elsewhere
#define AUTO_MOUSE_DEFAULT_LAYER <index of your mouse layer>

// in keymap.c:
void pointing_device_init_user(void) {
    set_auto_mouse_layer(<mouse_layer>); // only required if AUTO_MOUSE_DEFAULT_LAYER is not set to index of <mouse_layer>
    set_auto_mouse_enable(true);         // always required before the auto mouse feature will work
}

Because the auto mouse feature can be disabled/enabled during runtime and starts as disabled by default it must be enabled by calling set_auto_mouse_enable(true); somewhere in firmware before the feature will work.
Note: for setting the target layer during initialization either setting AUTO_MOUSE_DEFAULT_LAYER in config.h or calling set_auto_mouse_layer(<mouse_layer>) can be used.

How to Customize:

There are a few ways to control the auto mouse feature with both config.h options and functions for controlling it during runtime.

config.h Options:

Define Description Range Units Default
POINTING_DEVICE_AUTO_MOUSE_ENABLE (Required) Enables auto mouse layer feature None Not defined
AUTO_MOUSE_DEFAULT_LAYER (Optional) Index of layer to use as default target layer 0 - LAYER_MAX uint8_t 1
AUTO_MOUSE_TIME (Optional) Time layer remains active after activation ideally (250-1000) ms 650 ms
AUTO_MOUSE_DELAY (Optional) Lockout time after non-mouse key is pressed ideally (100-1000) ms TAPPING_TERM or 200 ms
AUTO_MOUSE_DEBOUNCE (Optional) Time delay from last activation to next update ideally (10 - 100) ms 25 ms

Adding mouse keys

While all default mouse keys and layer keys(for current mouse layer) are treated as mouse keys, additional Keyrecords can be added to mouse keys by adding them to the is_mouse_record_* stack.

Callbacks for setting up additional key codes as mouse keys:

Callback Description
bool is_mouse_record_kb(uint16_t keycode, keyrecord_t* record) keyboard level callback for adding mouse keys
bool is_mouse_record_user(uint16_t keycode, keyrecord_t* record) user/keymap level callback for adding mouse keys
To use the callback function to add mouse keys:

The following code will cause the enter key and all of the arrow keys to be treated as mouse keys (hold target layer while they are pressed and reset active layer timer).


// in <keyboard>.c:
bool is_mouse_record_kb(uint16_t keycode, keyrecord_t* record) {
    switch(keycode) {
        case KC_ENT:
            return true;
        case KC_RIGHT ... KC_UP:
            return true;
        default:
            return false;
    }
    return  is_mouse_record_user(keycode, record);
}

Advanced control

There are several functions that allow for more advanced interaction with the auto mouse feature allowing for greater control.

Functions to control auto mouse enable and target layer:

Function Description Aliases Return type
set_auto_mouse_enable(bool enable) Enable or disable auto mouse (true:enable, false:disable) void(None)
get_auto_mouse_enable(void) Return auto mouse enable state (true:enabled, false:disabled) AUTO_MOUSE_ENABLED bool
set_auto_mouse_layer(uint8_t LAYER) Change/set the target layer for auto mouse void(None)
get_auto_mouse_layer(void) Return auto mouse target layer index AUTO_MOUSE_TARGET_LAYER uint8_t
remove_auto_mouse_layer(layer_state_t state, bool force) Return state with target layer removed if appropriate (ignore criteria if force) layer_state_t
auto_mouse_layer_off(void) Disable target layer if appropriate will call (makes call to layer_state_set) void(None)
auto_mouse_toggle(void) Toggle on/off target toggle state (disables layer deactivation when true) void(None)
get_auto_mouse_toggle(void) Return value of toggling state variable bool

NOTES:
- Due to the nature of how some functions work, the auto_mouse_trigger_reset, and auto_mouse_layer_off functions should never be called in the layer_state_set_* stack as this can cause indefinite loops.
- It is recommended that remove_auto_mouse_layer is used in the layer_state_set_* stack of functions and auto_mouse_layer_off is used everywhere else
- remove_auto_mouse_layer(state, false) or auto_mouse_layer_off() should be called before any instance of set_auto_mouse_enabled(false) or set_auto_mouse_layer(layer) to ensure that the target layer will be removed appropriately before disabling auto mouse or changing target to avoid a stuck layer

Functions for handling custom key events:

Function Description Return type
auto_mouse_keyevent(bool pressed) Auto mouse mouse key event (true: key down, false: key up) void(None)
auto_mouse_trigger_reset(bool pressed) Reset auto mouse status on key down and start delay timer (non-mouse key event) void(None)
auto_mouse_toggle(void) Toggle on/off target toggle state (disables layer deactivation when true) void(None)
get_auto_mouse_toggle(void) Return value of toggling state variable bool
NOTE: Generally it would be preferable to use the is_mouse_record_* functions to add any additional keys that should act as mouse keys rather than adding auto_mouse_keyevent(record.event->pressed) to process_records_*

Advanced control examples

Disable auto mouse on certain layers:

The auto mouse feature can be disabled any time and this can be helpful if you want to disable the auto mouse feature under certain circumstances such as when particular layers are active. One issue however is the handling of the target layer, it needs to be removed appropriately before disabling auto mouse (see notes under control functions above). The following function would disable the auto_mouse feature whenever the layers _LAYER5 through _LAYER7 are active as the top most layer (ignoring target layer).

// in keymap.c:
layer_state_t layer_state_set_user(layer_state_t state) {
    // checks highest layer other than target layer
    switch(get_highest_layer(remove_auto_mouse_layer(state, true))) {
        case _LAYER5 ... _LAYER7:
            // remove_auto_mouse_target must be called to adjust state *before* setting enable
            state = remove_auto_mouse_layer(state, false);
            set_auto_mouse_enable(false);
            break;
        default:
            set_auto_mouse_enable(true);
            break;
    }
    // recommend that any code that makes adjustment based on auto mouse layer state would go here
    return state;
}

Set different target layer when a particular layer is active:

The below code will change the auto mouse layer target to _MOUSE_LAYER_2 when _DEFAULT_LAYER_2 is highest default layer state.
NOTE: that auto_mouse_layer_off is used here instead of remove_auto_mouse_layer as default_layer_state_set_* stack is separate from the layer_state_set_* stack if something similar was to be done in layer_state_set_user state = remove_auto_mouse_layer(state, false)should be used instead *ADDITIONAL NOTE:AUTO_MOUSE_TARGET_LAYER` is checked if already set to avoid deactivating the target layer unless needed*

// in keymap.c
layer_state_t default_layer_state_set_user(layer_state_t state) {
    // switch on change in default layer need to check if target layer already set to avoid turning off layer needlessly
    switch(get_highest_layer(state)) {
        case _DEFAULT_LAYER_2:
            if ((AUTO_MOUSE_TARGET_LAYER) == _MOUSE_LAYER_2) break;
            auto_mouse_layer_off();
            set_auto_mouse_layer(_MOUSE_LAYER_2);
            break;
        
        default:
            if((AUTO_MOUSE_TARGET_LAYER) == _MOUSE_LAYER_1) break;
            auto_mouse_layer_off();
            set_auto_mouse_layer(_MOUSE_LAYER_1);
    }
    return state;
}

Use custom keys to control auto mouse:

Custom key records could also be created that control the auto mouse feature.
The code example below would create a custom key that would toggle the auto mouse feature on and off when pressed while also setting a bool that could be used to disable other code that may turn it on such as the layer code above.

// in config.h:
enum user_custom_keycodes {
    AM_Toggle = SAFE_RANGE
};

// in keymap.c:
// set up global bool to adjust other user code
bool auto_mouse_tg_off = !AUTO_MOUSE_ENABLED;

bool process_record_user(uint16_t keycode, keyrecord_t* record) {
    switch (keycode) {
        // toggle auto mouse enable key
        case AM_Toggle:
            if(record->event.pressed) { // key down
                auto_mouse_layer_off(); // disable target layer if needed
                set_auto_mouse_enabled((AUTO_MOUSE_ENABLED) ^ 1);
                auto_mouse_tg_off = !get_auto_mouse_enabled();
            } // do nothing on key up
            return false; // prevent further processing of keycode
    }
}

Customize Target Layer Activation

Layer activation can be customized by overwriting the auto_mouse_activation function. This function is checked every time pointing_device_task is called when inactive and every AUTO_MOUSE_DEBOUNCE ms when active, and will evaluate pointing device level conditions that trigger target layer activation. When it returns true, the target layer will be activated barring the usual exceptions (e.g. delay time has not expired).

By default it will return true if any of the mouse_report axes x,y,h,v are non zero, or if there is any mouse buttons active in mouse_report. Note: The Cirque pinnacle track pad already implements a custom activation function that will activate on touchdown as well as movement all of the default conditions, currently this only works for the master side of split keyboards.

Function Description Return type
auto_mouse_activation(report_mouse_t mouse_report) Overwritable function that controls target layer activation (when true) bool

Auto Mouse for Custom Pointing Device Task

When using a custom pointing device (overwriting pointing_device_task) the following code should be somewhere in the pointing_device_task_* stack:

void pointing_device_task(void) {
    //...Custom pointing device task code
    
    // handle automatic mouse layer (needs report_mouse_t as input)
    pointing_device_task_auto_mouse(local_mouse_report);
    
    //...More custom pointing device task code
    
    pointing_device_send();
}

In general the following two functions must be implemented in appropriate locations for auto mouse to function:

Function Description Suggested location
pointing_device_task_auto_mouse(report_mouse_t mouse_report) handles target layer activation and is_active status updates pointing_device_task stack
process_auto_mouse(uint16_t keycode, keyrecord_t* record) Keycode processing for auto mouse process_record stack