keychron_qmk_firmware/keyboards/planck/rev7/matrix.c

189 lines
5.4 KiB
C
Raw Normal View History

/*
* Copyright 2018-2023 Jack Humbert <jack.humb@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gpio.h"
#include "hal_pal.h"
#include "hal_pal_lld.h"
#include "quantum.h"
#include <math.h>
// STM32-specific watchdog config calculations
// timeout = 31.25us * PR * (RL + 1)
#define _STM32_IWDG_LSI(us) ((us) / 31.25)
#define STM32_IWDG_PR_US(us) (uint8_t)(log(_STM32_IWDG_LSI(us)) / log(2) - 11)
#define STM32_IWDG_PR_MS(s) STM32_IWDG_PR_US(s * 1000.0)
#define STM32_IWDG_PR_S(s) STM32_IWDG_PR_US(s * 1000000.0)
#define _STM32_IWDG_SCALAR(us) (2 << ((uint8_t)STM32_IWDG_PR_US(us) + 1))
#define STM32_IWDG_RL_US(us) (uint64_t)(_STM32_IWDG_LSI(us)) / _STM32_IWDG_SCALAR(us)
#define STM32_IWDG_RL_MS(s) STM32_IWDG_RL_US(s * 1000.0)
#define STM32_IWDG_RL_S(s) STM32_IWDG_RL_US(s * 1000000.0)
#if !defined(PLANCK_ENCODER_RESOLUTION)
# define PLANCK_ENCODER_RESOLUTION 4
#endif
#if !defined(PLANCK_WATCHDOG_TIMEOUT)
# define PLANCK_WATCHDOG_TIMEOUT 1.0
#endif
#ifdef ENCODER_MAP_ENABLE
#error "The encoder map feature is not currently supported by the Planck's encoder matrix"
#endif
/* matrix state(1:on, 0:off) */
static pin_t matrix_row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static pin_t matrix_col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
static matrix_row_t matrix_inverted[MATRIX_COLS];
#ifdef ENCODER_ENABLE
int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
uint8_t encoder_state[8] = {0};
int8_t encoder_pulses[8] = {0};
uint8_t encoder_value[8] = {0};
#endif
void matrix_init_custom(void) {
// actual matrix setup - cols
for (int i = 0; i < MATRIX_COLS; i++) {
setPinOutput(matrix_col_pins[i]);
writePinLow(matrix_col_pins[i]);
}
// rows
for (int i = 0; i < MATRIX_ROWS; i++) {
setPinInputLow(matrix_row_pins[i]);
}
// encoder A & B setup
setPinInputLow(B12);
setPinInputLow(B13);
#ifndef PLANCK_WATCHDOG_DISABLE
wdgInit();
static WDGConfig wdgcfg;
wdgcfg.pr = STM32_IWDG_PR_S(PLANCK_WATCHDOG_TIMEOUT);
wdgcfg.rlr = STM32_IWDG_RL_S(PLANCK_WATCHDOG_TIMEOUT);
wdgcfg.winr = STM32_IWDG_WIN_DISABLED;
wdgStart(&WDGD1, &wdgcfg);
#endif
}
#ifdef ENCODER_ENABLE
bool encoder_update(uint8_t index, uint8_t state) {
bool changed = false;
uint8_t i = index;
encoder_pulses[i] += encoder_LUT[state & 0xF];
if (encoder_pulses[i] >= PLANCK_ENCODER_RESOLUTION) {
encoder_value[index]++;
changed = true;
encoder_update_kb(index, false);
}
if (encoder_pulses[i] <= -PLANCK_ENCODER_RESOLUTION) {
encoder_value[index]--;
changed = true;
encoder_update_kb(index, true);
}
encoder_pulses[i] %= PLANCK_ENCODER_RESOLUTION;
#ifdef ENCODER_DEFAULT_POS
encoder_pulses[i] = 0;
#endif
return changed;
}
#endif
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
#ifndef PLANCK_WATCHDOG_DISABLE
// reset watchdog
wdgReset(&WDGD1);
#endif
bool changed = false;
// actual matrix
for (int col = 0; col < MATRIX_COLS; col++) {
matrix_row_t data = 0;
// strobe col
writePinHigh(matrix_col_pins[col]);
// need wait to settle pin state
wait_us(20);
// read row data
for (int row = 0; row < MATRIX_ROWS; row++) {
data |= (readPin(matrix_row_pins[row]) << row);
}
// unstrobe col
writePinLow(matrix_col_pins[col]);
if (matrix_inverted[col] != data) {
matrix_inverted[col] = data;
}
}
for (int row = 0; row < MATRIX_ROWS; row++) {
matrix_row_t old = current_matrix[row];
current_matrix[row] = 0;
for (int col = 0; col < MATRIX_COLS; col++) {
current_matrix[row] |= ((matrix_inverted[col] & (1 << row) ? 1 : 0) << col);
}
changed |= old != current_matrix[row];
}
#ifdef ENCODER_ENABLE
// encoder-matrix functionality
// set up C/rows for encoder read
for (int i = 0; i < MATRIX_ROWS; i++) {
setPinOutput(matrix_row_pins[i]);
writePinHigh(matrix_row_pins[i]);
}
// set up A & B for reading
setPinInputHigh(B12);
setPinInputHigh(B13);
for (int i = 0; i < MATRIX_ROWS; i++) {
writePinLow(matrix_row_pins[i]);
wait_us(10);
uint8_t new_status = (palReadPad(GPIOB, 12) << 0) | (palReadPad(GPIOB, 13) << 1);
if ((encoder_state[i] & 0x3) != new_status) {
encoder_state[i] <<= 2;
encoder_state[i] |= new_status;
encoder_update(i, encoder_state[i]);
}
writePinHigh(matrix_row_pins[i]);
}
// revert A & B to matrix state
setPinInputLow(B12);
setPinInputLow(B13);
// revert C/rows to matrix state
for (int i = 0; i < MATRIX_ROWS; i++) {
setPinInputLow(matrix_row_pins[i]);
}
#endif
return changed;
}