keychron_qmk_firmware/keyboards/gboards/butterstick/sten.c
Jeff Epler 9632360caa
Use a macro to compute the size of arrays at compile time (#18044)
* Add ARRAY_SIZE and CEILING utility macros

* Apply a coccinelle patch to use ARRAY_SIZE

* fix up some straggling items

* Fix 'make test:secure'

* Enhance ARRAY_SIZE macro to reject acting on pointers

The previous definition would not produce a diagnostic for
```
int *p;
size_t num_elem = ARRAY_SIZE(p)
```
but the new one will.

* explicitly get definition of ARRAY_SIZE

* Convert to ARRAY_SIZE when const is involved

The following spatch finds additional instances where the array is
const and the division is by the size of the type, not the size of
the first element:
```
@ rule5a using "empty.iso" @
type T;
const T[] E;
@@

- (sizeof(E)/sizeof(T))
+ ARRAY_SIZE(E)

@ rule6a using "empty.iso" @
type T;
const T[] E;
@@

- sizeof(E)/sizeof(T)
+ ARRAY_SIZE(E)
```

* New instances of ARRAY_SIZE added since initial spatch run

* Use `ARRAY_SIZE` in docs (found by grep)

* Manually use ARRAY_SIZE

hs_set is expected to be the same size as uint16_t, though it's made
of two 8-bit integers

* Just like char, sizeof(uint8_t) is guaranteed to be 1

This is at least true on any plausible system where qmk is actually used.

Per my understanding it's universally true, assuming that uint8_t exists:
https://stackoverflow.com/questions/48655310/can-i-assume-that-sizeofuint8-t-1

* Run qmk-format on core C files touched in this branch

Co-authored-by: Stefan Kerkmann <karlk90@pm.me>
2022-08-30 10:20:04 +02:00

419 lines
10 KiB
C

#include "sten.h"
// Chord state
uint32_t cChord = 0; // Current Chord
int chordIndex = 0; // Keys in previousachord
int32_t chordState[32]; // Full Chord history
#define QWERBUF 24 // Size of chords to buffer for output
bool repeatFlag = false; // Should we repeat?
uint32_t pChord = 0; // Previous Chord
int pChordIndex = 0; // Keys in previousachord
uint32_t pChordState[32]; // Previous chord sate
uint32_t stickyBits = 0; // Or'd with every incoming press
#ifndef NO_DEBUG
char debugMsg[32];
#endif
// StenoLayer
uint32_t releasedChord = 0; // Keys released from current chord
uint32_t tChord = 0; // Protects state of cChord
#ifndef STENOLAYERS
uint32_t stenoLayers[] = { PWR };
size_t stenoLayerCount = ARRAY_SIZE(stenoLayers);
#endif
// Mode state
enum MODE { STENO = 0, QWERTY, COMMAND };
enum MODE pMode;
bool QWERSTENO = false;
#ifdef ONLYQWERTY
enum MODE cMode = QWERTY;
#else
enum MODE cMode = STENO;
#endif
// Command State
#define MAX_CMD_BUF 20
uint8_t CMDLEN = 0;
uint8_t CMDBUF[MAX_CMD_BUF];
// Key Repeat state
bool inChord = false;
bool repEngaged = false;
uint16_t repTimer = 0;
#define REP_INIT_DELAY 750
#define REP_DELAY 25
// Mousekeys state
bool inMouse = false;
int8_t mousePress;
// All processing done at chordUp goes through here
bool send_steno_chord_user(steno_mode_t mode, uint8_t chord[6]) {
// Check for mousekeys, this is release
#ifdef MOUSEKEY_ENABLE
if (inMouse) {
inMouse = false;
mousekey_off(mousePress);
mousekey_send();
}
#endif
// Toggle Serial/QWERTY steno
if (cChord == (PWR | FN | ST1 | ST2)) {
#ifndef NO_DEBUG
uprintf("Fallback Toggle\n");
#endif
QWERSTENO = !QWERSTENO;
goto out;
}
// handle command mode
if (cChord == (PWR | FN | RD | RZ)) {
#ifndef NO_DEBUG
uprintf("COMMAND Toggle\n");
#endif
if (cMode != COMMAND) { // Entering Command Mode
CMDLEN = 0;
pMode = cMode;
cMode = COMMAND;
} else { // Exiting Command Mode
cMode = pMode;
// Press all and release all
for (int i = 0; i < CMDLEN; i++) {
register_code(CMDBUF[i]);
}
clear_keyboard();
}
goto out;
}
// Handle Gaming Toggle,
if (cChord == (PWR | FN | ST4 | ST3) && keymapsCount > 1) {
#ifndef NO_DEBUG
uprintf("Switching to QMK\n");
#endif
layer_on(1);
goto out;
}
// Lone FN press, toggle QWERTY
#ifndef ONLYQWERTY
if (cChord == FN) {
(cMode == STENO) ? (cMode = QWERTY) : (cMode = STENO);
goto out;
}
#endif
// Check for Plover momentary
if (cMode == QWERTY && (cChord & FN)) {
cChord ^= FN;
goto steno;
}
// Do QWERTY and Momentary QWERTY
if (cMode == QWERTY || (cMode == COMMAND) || (cChord & (FN | PWR))) {
processChord(false);
goto out;
}
// Fallback NKRO Steno
if (cMode == STENO && QWERSTENO) {
processChord(true);
goto out;
}
steno:
// Hey that's a steno chord!
inChord = false;
chordIndex = 0;
cChord = 0;
return true;
out:
cChord = 0;
inChord = false;
chordIndex = 0;
clear_keyboard();
repEngaged = false;
for (int i = 0; i < 32; i++)
chordState[i] = 0xFFFF;
return false;
}
// Update Chord State
bool process_steno_user(uint16_t keycode, keyrecord_t *record) {
// Everything happens in here when steno keys come in.
// Bail on keyup
if (!record->event.pressed) return true;
// Update key repeat timers
repTimer = timer_read();
inChord = true;
// Switch on the press adding to chord
bool pr = record->event.pressed;
switch (keycode) {
// Mods and stuff
case STN_ST1: pr ? (cChord |= (ST1)): (cChord &= ~(ST1)); break;
case STN_ST2: pr ? (cChord |= (ST2)): (cChord &= ~(ST2)); break;
case STN_ST3: pr ? (cChord |= (ST3)): (cChord &= ~(ST3)); break;
case STN_ST4: pr ? (cChord |= (ST4)): (cChord &= ~(ST4)); break;
case STN_FN: pr ? (cChord |= (FN)) : (cChord &= ~(FN)); break;
case STN_PWR: pr ? (cChord |= (PWR)): (cChord &= ~(PWR)); break;
case STN_N1...STN_N6: pr ? (cChord |= (LNO)): (cChord &= ~(LNO)); break;
case STN_N7...STN_NC: pr ? (cChord |= (RNO)): (cChord &= ~(RNO)); break;
// All the letter keys
case STN_S1: pr ? (cChord |= (LSU)) : (cChord &= ~(LSU)); break;
case STN_S2: pr ? (cChord |= (LSD)) : (cChord &= ~(LSD)); break;
case STN_TL: pr ? (cChord |= (LFT)) : (cChord &= ~(LFT)); break;
case STN_KL: pr ? (cChord |= (LK)) : (cChord &= ~(LK)); break;
case STN_PL: pr ? (cChord |= (LP)) : (cChord &= ~(LP)); break;
case STN_WL: pr ? (cChord |= (LW)) : (cChord &= ~(LW)); break;
case STN_HL: pr ? (cChord |= (LH)) : (cChord &= ~(LH)); break;
case STN_RL: pr ? (cChord |= (LR)) : (cChord &= ~(LR)); break;
case STN_A: pr ? (cChord |= (LA)) : (cChord &= ~(LA)); break;
case STN_O: pr ? (cChord |= (LO)) : (cChord &= ~(LO)); break;
case STN_E: pr ? (cChord |= (RE)) : (cChord &= ~(RE)); break;
case STN_U: pr ? (cChord |= (RU)) : (cChord &= ~(RU)); break;
case STN_FR: pr ? (cChord |= (RF)) : (cChord &= ~(RF)); break;
case STN_RR: pr ? (cChord |= (RR)) : (cChord &= ~(RR)); break;
case STN_PR: pr ? (cChord |= (RP)) : (cChord &= ~(RP)); break;
case STN_BR: pr ? (cChord |= (RB)) : (cChord &= ~(RB)); break;
case STN_LR: pr ? (cChord |= (RL)) : (cChord &= ~(RL)); break;
case STN_GR: pr ? (cChord |= (RG)) : (cChord &= ~(RG)); break;
case STN_TR: pr ? (cChord |= (RT)) : (cChord &= ~(RT)); break;
case STN_SR: pr ? (cChord |= (RS)) : (cChord &= ~(RS)); break;
case STN_DR: pr ? (cChord |= (RD)) : (cChord &= ~(RD)); break;
case STN_ZR: pr ? (cChord |= (RZ)) : (cChord &= ~(RZ)); break;
}
// Store previous state for fastQWER
if (pr) {
chordState[chordIndex] = cChord;
chordIndex++;
}
return true;
}
void matrix_scan_user(void) {
// We abuse this for early sending of key
// Key repeat only on QWER/SYMB layers
if (cMode != QWERTY || !inChord) return;
// Check timers
#ifndef NO_REPEAT
if (repEngaged && timer_elapsed(repTimer) > REP_DELAY) {
// Process Key for report
processChord(false);
// Send report to host
send_keyboard_report();
clear_keyboard();
repTimer = timer_read();
}
if (!repEngaged && timer_elapsed(repTimer) > REP_INIT_DELAY) {
repEngaged = true;
}
#endif
};
// For Plover NKRO
uint32_t processFakeSteno(bool lookup) {
P( LSU, SEND(KC_Q););
P( LSD, SEND(KC_A););
P( LFT, SEND(KC_W););
P( LP, SEND(KC_E););
P( LH, SEND(KC_R););
P( LK, SEND(KC_S););
P( LW, SEND(KC_D););
P( LR, SEND(KC_F););
P( ST1, SEND(KC_T););
P( ST2, SEND(KC_G););
P( LA, SEND(KC_C););
P( LO, SEND(KC_V););
P( RE, SEND(KC_N););
P( RU, SEND(KC_M););
P( ST3, SEND(KC_Y););
P( ST4, SEND(KC_H););
P( RF, SEND(KC_U););
P( RP, SEND(KC_I););
P( RL, SEND(KC_O););
P( RT, SEND(KC_P););
P( RD, SEND(KC_LBRC););
P( RR, SEND(KC_J););
P( RB, SEND(KC_K););
P( RG, SEND(KC_L););
P( RS, SEND(KC_SCLN););
P( RZ, SEND(KC_COMM););
P( LNO, SEND(KC_1););
P( RNO, SEND(KC_1););
return 0;
}
// Traverse the chord history to a given point
// Returns the mask to use
void processChord(bool useFakeSteno) {
// Save the clean chord state
uint32_t savedChord = cChord;
// Apply Stick Bits if needed
if (stickyBits != 0) {
cChord |= stickyBits;
for (int i = 0; i <= chordIndex; i++)
chordState[i] |= stickyBits;
}
// Strip FN
if (cChord & FN) cChord ^= FN;
// First we test if a whole chord was passsed
// If so we just run it handling repeat logic
if (useFakeSteno && processFakeSteno(true) == cChord) {
processFakeSteno(false);
return;
} else if (processQwerty(true) == cChord) {
processQwerty(false);
// Repeat logic
if (repeatFlag) {
restoreState();
repeatFlag = false;
processChord(false);
} else {
saveState(cChord);
}
return;
}
// Iterate through chord picking out the individual
// and longest chords
uint32_t bufChords[QWERBUF];
int bufLen = 0;
uint32_t mask = 0;
// We iterate over it multiple times to catch the longest
// chord. Then that gets addded to the mask and re run.
while (savedChord != mask) {
uint32_t test = 0;
uint32_t longestChord = 0;
for (int i = 0; i <= chordIndex; i++) {
cChord = chordState[i] & ~mask;
if (cChord == 0)
continue;
// Assume mid parse Sym is new chord
if (i != 0 && test != 0 && (cChord ^ test) == PWR) {
longestChord = test;
break;
}
// Lock SYM layer in once detected
if (mask & PWR)
cChord |= PWR;
// Testing for keycodes
if (useFakeSteno) {
test = processFakeSteno(true);
} else {
test = processQwerty(true);
}
if (test != 0) {
longestChord = test;
}
}
mask |= longestChord;
bufChords[bufLen] = longestChord;
bufLen++;
// That's a loop of sorts, halt processing
if (bufLen >= QWERBUF) {
return;
}
}
// Now that the buffer is populated, we run it
for (int i = 0; i < bufLen ; i++) {
cChord = bufChords[i];
if (useFakeSteno) {
processFakeSteno(false);
} else {
processQwerty(false);
}
}
// Save state in case of repeat
if (!repeatFlag) {
saveState(savedChord);
}
// Restore cChord for held repeat
cChord = savedChord;
return;
}
void saveState(uint32_t cleanChord) {
pChord = cleanChord;
pChordIndex = chordIndex;
for (int i = 0; i < 32; i++)
pChordState[i] = chordState[i];
}
void restoreState() {
cChord = pChord;
chordIndex = pChordIndex;
for (int i = 0; i < 32; i++)
chordState[i] = pChordState[i];
}
// Macros for calling from keymap.c
void SEND(uint8_t kc) {
// Send Keycode, Does not work for Quantum Codes
if (cMode == COMMAND && CMDLEN < MAX_CMD_BUF) {
#ifndef NO_DEBUG
uprintf("CMD LEN: %d BUF: %d\n", CMDLEN, MAX_CMD_BUF);
#endif
CMDBUF[CMDLEN] = kc;
CMDLEN++;
}
if (cMode != COMMAND) register_code(kc);
return;
}
void REPEAT(void) {
if (cMode != QWERTY)
return;
repeatFlag = true;
return;
}
void SET_STICKY(uint32_t stick) {
stickyBits = stick;
return;
}
void SWITCH_LAYER(int layer) {
if (keymapsCount >= layer)
layer_on(layer);
}
void CLICK_MOUSE(uint8_t kc) {
#ifdef MOUSEKEY_ENABLE
mousekey_on(kc);
mousekey_send();
// Store state for later use
inMouse = true;
mousePress = kc;
#endif
}