mirror of
https://github.com/Keychron/qmk_firmware.git
synced 2024-12-26 19:18:03 +06:00
1f2b1dedcc
* Install dependencies before executing unit tests. * Split out UTF-8 decoder. * Fixup python formatting rules. * Add documentation for QGF/QFF and the RLE format used. * Add CLI commands for converting images and fonts. * Add stub rules.mk for QP. * Add stream type. * Add base driver and comms interfaces. * Add support for SPI, SPI+D/C comms drivers. * Include <qp.h> when enabled. * Add base support for SPI+D/C+RST panels, as well as concrete implementation of ST7789. * Add support for GC9A01. * Add support for ILI9341. * Add support for ILI9163. * Add support for SSD1351. * Implement qp_setpixel, including pixdata buffer management. * Implement qp_line. * Implement qp_rect. * Implement qp_circle. * Implement qp_ellipse. * Implement palette interpolation. * Allow for streams to work with either flash or RAM. * Image loading. * Font loading. * QGF palette loading. * Progressive decoder of pixel data supporting Raw+RLE, 1-,2-,4-,8-bpp monochrome and palette-based images. * Image drawing. * Animations. * Font rendering. * Check against 256 colours, dump out the loaded palette if debugging enabled. * Fix build. * AVR is not the intended audience. * `qmk format-c` * Generation fix. * First batch of docs. * More docs and examples. * Review comments. * Public API documentation.
143 lines
6.0 KiB
C
143 lines
6.0 KiB
C
// Copyright 2021 Nick Brassel (@tzarc)
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "qp_internal.h"
|
|
#include "qp_draw.h"
|
|
#include "qp_comms.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Palette / Monochrome-format decoder
|
|
|
|
static const qp_pixel_t qp_pixel_white = {.hsv888 = {.h = 0, .s = 0, .v = 255}};
|
|
static const qp_pixel_t qp_pixel_black = {.hsv888 = {.h = 0, .s = 0, .v = 0}};
|
|
|
|
bool qp_internal_bpp_capable(uint8_t bits_per_pixel) {
|
|
#if !(QUANTUM_PAINTER_SUPPORTS_256_PALETTE)
|
|
if (bits_per_pixel > 4) {
|
|
qp_dprintf("qp_internal_decode_palette: image bpp greater than 4\n");
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
if (bits_per_pixel > 8) {
|
|
qp_dprintf("qp_internal_decode_palette: image bpp greater than 8\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool qp_internal_decode_palette(painter_device_t device, uint32_t pixel_count, uint8_t bits_per_pixel, qp_internal_byte_input_callback input_callback, void* input_arg, qp_pixel_t* palette, qp_internal_pixel_output_callback output_callback, void* output_arg) {
|
|
const uint8_t pixel_bitmask = (1 << bits_per_pixel) - 1;
|
|
const uint8_t pixels_per_byte = 8 / bits_per_pixel;
|
|
uint32_t remaining_pixels = pixel_count; // don't try to derive from byte_count, we may not use an entire byte
|
|
while (remaining_pixels > 0) {
|
|
uint8_t byteval = input_callback(input_arg);
|
|
if (byteval < 0) {
|
|
return false;
|
|
}
|
|
uint8_t loop_pixels = remaining_pixels < pixels_per_byte ? remaining_pixels : pixels_per_byte;
|
|
for (uint8_t q = 0; q < loop_pixels; ++q) {
|
|
if (!output_callback(palette, byteval & pixel_bitmask, output_arg)) {
|
|
return false;
|
|
}
|
|
byteval >>= bits_per_pixel;
|
|
}
|
|
remaining_pixels -= loop_pixels;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool qp_internal_decode_grayscale(painter_device_t device, uint32_t pixel_count, uint8_t bits_per_pixel, qp_internal_byte_input_callback input_callback, void* input_arg, qp_internal_pixel_output_callback output_callback, void* output_arg) {
|
|
return qp_internal_decode_recolor(device, pixel_count, bits_per_pixel, input_callback, input_arg, qp_pixel_white, qp_pixel_black, output_callback, output_arg);
|
|
}
|
|
|
|
bool qp_internal_decode_recolor(painter_device_t device, uint32_t pixel_count, uint8_t bits_per_pixel, qp_internal_byte_input_callback input_callback, void* input_arg, qp_pixel_t fg_hsv888, qp_pixel_t bg_hsv888, qp_internal_pixel_output_callback output_callback, void* output_arg) {
|
|
struct painter_driver_t* driver = (struct painter_driver_t*)device;
|
|
int16_t steps = 1 << bits_per_pixel; // number of items we need to interpolate
|
|
if (qp_internal_interpolate_palette(fg_hsv888, bg_hsv888, steps)) {
|
|
if (!driver->driver_vtable->palette_convert(device, steps, qp_internal_global_pixel_lookup_table)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return qp_internal_decode_palette(device, pixel_count, bits_per_pixel, input_callback, input_arg, qp_internal_global_pixel_lookup_table, output_callback, output_arg);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Progressive pull of bytes, push of pixels
|
|
|
|
static inline int16_t qp_drawimage_byte_uncompressed_decoder(void* cb_arg) {
|
|
struct qp_internal_byte_input_state* state = (struct qp_internal_byte_input_state*)cb_arg;
|
|
state->curr = qp_stream_get(state->src_stream);
|
|
return state->curr;
|
|
}
|
|
|
|
static inline int16_t qp_drawimage_byte_rle_decoder(void* cb_arg) {
|
|
struct qp_internal_byte_input_state* state = (struct qp_internal_byte_input_state*)cb_arg;
|
|
|
|
// Work out if we're parsing the initial marker byte
|
|
if (state->rle.mode == MARKER_BYTE) {
|
|
uint8_t c = qp_stream_get(state->src_stream);
|
|
if (c >= 128) {
|
|
state->rle.mode = NON_REPEATING_RUN; // non-repeated run
|
|
state->rle.remain = c - 127;
|
|
} else {
|
|
state->rle.mode = REPEATING_RUN; // repeated run
|
|
state->rle.remain = c;
|
|
}
|
|
|
|
state->curr = qp_stream_get(state->src_stream);
|
|
}
|
|
|
|
// Work out which byte we're returning
|
|
uint8_t c = state->curr;
|
|
|
|
// Decrement the counter of the bytes remaining
|
|
state->rle.remain--;
|
|
|
|
if (state->rle.remain > 0) {
|
|
// If we're in a non-repeating run, queue up the next byte
|
|
if (state->rle.mode == NON_REPEATING_RUN) {
|
|
state->curr = qp_stream_get(state->src_stream);
|
|
}
|
|
} else {
|
|
// Swap back to querying the marker byte mode
|
|
state->rle.mode = MARKER_BYTE;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
bool qp_internal_pixel_appender(qp_pixel_t* palette, uint8_t index, void* cb_arg) {
|
|
struct qp_internal_pixel_output_state* state = (struct qp_internal_pixel_output_state*)cb_arg;
|
|
struct painter_driver_t* driver = (struct painter_driver_t*)state->device;
|
|
|
|
if (!driver->driver_vtable->append_pixels(state->device, qp_internal_global_pixdata_buffer, palette, state->pixel_write_pos++, 1, &index)) {
|
|
return false;
|
|
}
|
|
|
|
// If we've hit the transmit limit, send out the entire buffer and reset the write position
|
|
if (state->pixel_write_pos == state->max_pixels) {
|
|
if (!driver->driver_vtable->pixdata(state->device, qp_internal_global_pixdata_buffer, state->pixel_write_pos)) {
|
|
return false;
|
|
}
|
|
state->pixel_write_pos = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
qp_internal_byte_input_callback qp_internal_prepare_input_state(struct qp_internal_byte_input_state* input_state, painter_compression_t compression) {
|
|
switch (compression) {
|
|
case IMAGE_UNCOMPRESSED:
|
|
return qp_drawimage_byte_uncompressed_decoder;
|
|
case IMAGE_COMPRESSED_RLE:
|
|
input_state->rle.mode = MARKER_BYTE;
|
|
input_state->rle.remain = 0;
|
|
return qp_drawimage_byte_rle_decoder;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|