keychron_qmk_firmware/keyboards/keychron/c2_pro/matrix.c
Sergey Vlasov b1fbfaaacc
keychron/c2_pro/ansi/white: Fix column 19 in the custom matrix (#21805)
Although `keychron/c2_pro/ansi/rgb` and `keychron/c2_pro/ansi/white` use
the same custom matrix code, the matrix layouts are slightly different;
in particular, only the `keychron/c2_pro/ansi/white` board actually uses
column 19.  However, the handling of column 19 in the custom matrix code
was broken, therefore that column did not work.

Looks like the custom matrix code assumes that `SHIFT_COL_END` refers to
the last column connected to the shift register, and not to the column
past that; so the value of `SHIFT_COL_END` needs to be changed from 19
to 18 (columns 11...18 are connected to the shift register, and column
19 is connected to the C14 pin).

Also the code which was determining `SIZE_T` and `UNSELECT_ALL_COL` had
an off-by-one bug when counting the required number of bits (again due
to the confusion on the `SHIFT_COL_END` meaning); this had been fixed
too (the actual behavior of that part of the code did not change,
because both the old and the new version select the 8 bit variant).
2023-08-23 10:13:03 +01:00

203 lines
5.3 KiB
C

/* Copyright 2023 @ Keychron (https://www.keychron.com)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "quantum.h"
#ifndef SHIFT_COL_START
# define SHIFT_COL_START 8
#endif
#ifndef SHIFT_COL_END
# define SHIFT_COL_END 15
#endif
#if defined(SHIFT_COL_START) && defined(SHIFT_COL_END)
# if ((SHIFT_COL_END - SHIFT_COL_START + 1) > 16)
# define SIZE_T uint32_t
# define UNSELECT_ALL_COL 0xFFFFFFFF
# elif ((SHIFT_COL_END - SHIFT_COL_START + 1) > 8)
# define SIZE_T uint16_t
# define UNSELECT_ALL_COL 0xFFFF
# else
# define SIZE_T uint8_t
# define UNSELECT_ALL_COL 0xFF
# endif
#endif
pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
static inline void setPinOutput_writeLow(pin_t pin) {
ATOMIC_BLOCK_FORCEON {
setPinOutput(pin);
writePinLow(pin);
}
}
static inline void setPinOutput_writeHigh(pin_t pin) {
ATOMIC_BLOCK_FORCEON {
setPinOutput(pin);
writePinHigh(pin);
}
}
static inline void setPinInput_high(pin_t pin) {
ATOMIC_BLOCK_FORCEON {
setPinInputHigh(pin);
}
}
static inline uint8_t readMatrixPin(pin_t pin) {
if (pin != NO_PIN) {
return readPin(pin);
} else {
return 1;
}
}
static inline void HC595_delay(uint8_t n) {
while (n-- > 0) {
asm volatile("nop" ::: "memory");
}
}
static void HC595_output(SIZE_T data, uint8_t bit) {
uint8_t n = 1;
ATOMIC_BLOCK_FORCEON {
for (uint8_t i = 0; i < (SHIFT_COL_END - SHIFT_COL_START + 1); i++) {
if (data & 0x1) {
writePinHigh(HC595_DS);
} else {
writePinLow(HC595_DS);
}
writePinHigh(HC595_SHCP);
HC595_delay(n);
writePinLow(HC595_SHCP);
HC595_delay(n);
if (bit) {
break;
} else {
data = data >> 1;
}
}
writePinHigh(HC595_STCP);
HC595_delay(n);
writePinLow(HC595_STCP);
HC595_delay(n);
}
}
static bool select_col(uint8_t col) {
pin_t pin = col_pins[col];
if (col < SHIFT_COL_START || col > SHIFT_COL_END) {
setPinOutput_writeLow(pin);
return true;
} else {
if (col == SHIFT_COL_START) {
HC595_output(0x00, 1);
}
return true;
}
return false;
}
static void unselect_col(uint8_t col) {
pin_t pin = col_pins[col];
if (col < SHIFT_COL_START || col > SHIFT_COL_END) {
#ifdef MATRIX_UNSELECT_DRIVE_HIGH
setPinOutput_writeHigh(pin);
#else
setPinInput_high(pin);
#endif
} else {
HC595_output(0x01, 1);
}
}
static void unselect_cols(void) {
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
pin_t pin = col_pins[x];
if (x < SHIFT_COL_START || x > SHIFT_COL_END) {
#ifdef MATRIX_UNSELECT_DRIVE_HIGH
setPinOutput_writeHigh(pin);
#else
setPinInput_high(pin);
#endif
} else {
if (x == SHIFT_COL_START) HC595_output(UNSELECT_ALL_COL, 0);
}
}
}
static void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col, matrix_row_t row_shifter) {
bool key_pressed = false;
// Select col
if (!select_col(current_col)) { // select col
return; // skip NO_PIN col
}
matrix_output_select_delay();
// For each row...
for (uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++) {
// Check row pin state
if (readMatrixPin(row_pins[row_index]) == 0) {
// Pin LO, set col bit
current_matrix[row_index] |= row_shifter;
key_pressed = true;
} else {
// Pin HI, clear col bit
current_matrix[row_index] &= ~row_shifter;
}
}
// Unselect col
unselect_col(current_col);
matrix_output_unselect_delay(current_col, key_pressed); // wait for all Row signals to go HIGH
}
void matrix_init_custom(void) {
setPinOutput(HC595_DS);
setPinOutput(HC595_STCP);
setPinOutput(HC595_SHCP);
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
if (row_pins[x] != NO_PIN) {
setPinInput_high(row_pins[x]);
}
}
unselect_cols();
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
matrix_row_t curr_matrix[MATRIX_ROWS] = {0};
// Set col, read rows
matrix_row_t row_shifter = MATRIX_ROW_SHIFTER;
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++, row_shifter <<= 1) {
matrix_read_rows_on_col(curr_matrix, current_col, row_shifter);
}
bool changed = memcmp(current_matrix, curr_matrix, sizeof(curr_matrix)) != 0;
if (changed) memcpy(current_matrix, curr_matrix, sizeof(curr_matrix));
return changed;
}