keychron_qmk_firmware/quantum/process_keycode/process_unicode_common.c
Pascal Getreuer 95d20e6d8b
Fix and add unit tests for Caps Word to work with Unicode Map, Auto Shift, Retro Shift. (#17284)
* Fix Caps Word and Unicode Map

* Tests for Caps Word + Auto Shift and Unicode Map.

* Fix formatting

* Add additional keyboard report expectation macros

This commit defines five test utilities, EXPECT_REPORT, EXPECT_UNICODE,
EXPECT_EMPTY_REPORT, EXPECT_ANY_REPORT and EXPECT_NO_REPORT for use with
TestDriver.

EXPECT_REPORT sets a gmock expectation that a given keyboard report will
be sent. For instance,

  EXPECT_REPORT(driver, (KC_LSFT, KC_A));

is shorthand for

  EXPECT_CALL(driver,
      send_keyboard_mock(KeyboardReport(KC_LSFT, KC_A)));

EXPECT_UNICODE sets a gmock expectation that a given Unicode code point
will be sent using UC_LNX input mode. For instance for U+2013,

  EXPECT_UNICODE(driver, 0x2013);

expects the sequence of keys:

  "Ctrl+Shift+U, 2, 0, 1, 3, space".

EXPECT_EMPTY_REPORT sets a gmock expectation that a given keyboard
report will be sent. For instance

  EXPECT_EMPTY_REPORT(driver);

expects a single report without keypresses or modifiers.

EXPECT_ANY_REPORT sets a gmock expectation that a arbitrary keyboard
report will be sent, without matching its contents. For instance

  EXPECT_ANY_REPORT(driver).Times(1);

expects a single arbitrary keyboard report will be sent.

EXPECT_NO_REPORT sets a gmock expectation that no keyboard report will
be sent at all.

* Add tap_key() and tap_keys() to TestFixture.

This commit adds a `tap_key(key)` method to TestFixture that taps a
given KeymapKey, optionally with a specified delay between press and
release.

Similarly, the method `tap_keys(key_a, key_b, key_c)` taps a sequence of
KeymapKeys.

* Use EXPECT_REPORT, tap_keys, etc. in most tests.

This commit uses EXPECT_REPORT, EXPECT_UNICODE, EXPECT_EMPTY_REPORT,
EXPECT_NO_REPORT, tap_key() and tap_keys() test utilities from the
previous two commits in most tests. Particularly the EXPECT_REPORT
macro is frequently useful and makes a nice reduction in boilerplate
needed to express many tests.

Co-authored-by: David Kosorin <david@kosorin.net>
2022-06-05 09:14:02 +02:00

323 lines
9.2 KiB
C

/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "process_unicode_common.h"
#include "eeprom.h"
#include "utf8.h"
unicode_config_t unicode_config;
uint8_t unicode_saved_mods;
bool unicode_saved_caps_lock;
bool unicode_saved_num_lock;
#if UNICODE_SELECTED_MODES != -1
static uint8_t selected[] = {UNICODE_SELECTED_MODES};
static int8_t selected_count = sizeof selected / sizeof *selected;
static int8_t selected_index;
#endif
void unicode_input_mode_init(void) {
unicode_config.raw = eeprom_read_byte(EECONFIG_UNICODEMODE);
#if UNICODE_SELECTED_MODES != -1
# if UNICODE_CYCLE_PERSIST
// Find input_mode in selected modes
int8_t i;
for (i = 0; i < selected_count; i++) {
if (selected[i] == unicode_config.input_mode) {
selected_index = i;
break;
}
}
if (i == selected_count) {
// Not found: input_mode isn't selected, change to one that is
unicode_config.input_mode = selected[selected_index = 0];
}
# else
// Always change to the first selected input mode
unicode_config.input_mode = selected[selected_index = 0];
# endif
#endif
dprintf("Unicode input mode init to: %u\n", unicode_config.input_mode);
}
uint8_t get_unicode_input_mode(void) {
return unicode_config.input_mode;
}
void set_unicode_input_mode(uint8_t mode) {
unicode_config.input_mode = mode;
persist_unicode_input_mode();
dprintf("Unicode input mode set to: %u\n", unicode_config.input_mode);
}
void cycle_unicode_input_mode(int8_t offset) {
#if UNICODE_SELECTED_MODES != -1
selected_index = (selected_index + offset) % selected_count;
if (selected_index < 0) {
selected_index += selected_count;
}
unicode_config.input_mode = selected[selected_index];
# if UNICODE_CYCLE_PERSIST
persist_unicode_input_mode();
# endif
dprintf("Unicode input mode cycle to: %u\n", unicode_config.input_mode);
#endif
}
void persist_unicode_input_mode(void) {
eeprom_update_byte(EECONFIG_UNICODEMODE, unicode_config.input_mode);
}
__attribute__((weak)) void unicode_input_start(void) {
unicode_saved_caps_lock = host_keyboard_led_state().caps_lock;
unicode_saved_num_lock = host_keyboard_led_state().num_lock;
// Note the order matters here!
// Need to do this before we mess around with the mods, or else
// UNICODE_KEY_LNX (which is usually Ctrl-Shift-U) might not work
// correctly in the shifted case.
if (unicode_config.input_mode == UC_LNX && unicode_saved_caps_lock) {
tap_code(KC_CAPS_LOCK);
}
unicode_saved_mods = get_mods(); // Save current mods
clear_mods(); // Unregister mods to start from a clean state
clear_weak_mods();
switch (unicode_config.input_mode) {
case UC_MAC:
register_code(UNICODE_KEY_MAC);
break;
case UC_LNX:
tap_code16(UNICODE_KEY_LNX);
break;
case UC_WIN:
// For increased reliability, use numpad keys for inputting digits
if (!unicode_saved_num_lock) {
tap_code(KC_NUM_LOCK);
}
register_code(KC_LEFT_ALT);
wait_ms(UNICODE_TYPE_DELAY);
tap_code(KC_KP_PLUS);
break;
case UC_WINC:
tap_code(UNICODE_KEY_WINC);
tap_code(KC_U);
break;
}
wait_ms(UNICODE_TYPE_DELAY);
}
__attribute__((weak)) void unicode_input_finish(void) {
switch (unicode_config.input_mode) {
case UC_MAC:
unregister_code(UNICODE_KEY_MAC);
break;
case UC_LNX:
tap_code(KC_SPACE);
if (unicode_saved_caps_lock) {
tap_code(KC_CAPS_LOCK);
}
break;
case UC_WIN:
unregister_code(KC_LEFT_ALT);
if (!unicode_saved_num_lock) {
tap_code(KC_NUM_LOCK);
}
break;
case UC_WINC:
tap_code(KC_ENTER);
break;
}
set_mods(unicode_saved_mods); // Reregister previously set mods
}
__attribute__((weak)) void unicode_input_cancel(void) {
switch (unicode_config.input_mode) {
case UC_MAC:
unregister_code(UNICODE_KEY_MAC);
break;
case UC_LNX:
tap_code(KC_ESCAPE);
if (unicode_saved_caps_lock) {
tap_code(KC_CAPS_LOCK);
}
break;
case UC_WINC:
tap_code(KC_ESCAPE);
break;
case UC_WIN:
unregister_code(KC_LEFT_ALT);
if (!unicode_saved_num_lock) {
tap_code(KC_NUM_LOCK);
}
break;
}
set_mods(unicode_saved_mods); // Reregister previously set mods
}
// clang-format off
static void send_nibble_wrapper(uint8_t digit) {
if (unicode_config.input_mode == UC_WIN) {
uint8_t kc = digit < 10
? KC_KP_1 + (10 + digit - 1) % 10
: KC_A + (digit - 10);
tap_code(kc);
return;
}
send_nibble(digit);
}
// clang-format on
void register_hex(uint16_t hex) {
for (int i = 3; i >= 0; i--) {
uint8_t digit = ((hex >> (i * 4)) & 0xF);
send_nibble_wrapper(digit);
}
}
void register_hex32(uint32_t hex) {
bool onzerostart = true;
for (int i = 7; i >= 0; i--) {
if (i <= 3) {
onzerostart = false;
}
uint8_t digit = ((hex >> (i * 4)) & 0xF);
if (digit == 0) {
if (!onzerostart) {
send_nibble_wrapper(digit);
}
} else {
send_nibble_wrapper(digit);
onzerostart = false;
}
}
}
void register_unicode(uint32_t code_point) {
if (code_point > 0x10FFFF || (code_point > 0xFFFF && unicode_config.input_mode == UC_WIN)) {
// Code point out of range, do nothing
return;
}
unicode_input_start();
if (code_point > 0xFFFF && unicode_config.input_mode == UC_MAC) {
// Convert code point to UTF-16 surrogate pair on macOS
code_point -= 0x10000;
uint32_t lo = code_point & 0x3FF, hi = (code_point & 0xFFC00) >> 10;
register_hex32(hi + 0xD800);
register_hex32(lo + 0xDC00);
} else {
register_hex32(code_point);
}
unicode_input_finish();
}
void send_unicode_string(const char *str) {
if (!str) {
return;
}
while (*str) {
int32_t code_point = 0;
str = decode_utf8(str, &code_point);
if (code_point >= 0) {
register_unicode(code_point);
}
}
}
// clang-format off
static void audio_helper(void) {
#ifdef AUDIO_ENABLE
switch (get_unicode_input_mode()) {
# ifdef UNICODE_SONG_MAC
static float song_mac[][2] = UNICODE_SONG_MAC;
case UC_MAC:
PLAY_SONG(song_mac);
break;
# endif
# ifdef UNICODE_SONG_LNX
static float song_lnx[][2] = UNICODE_SONG_LNX;
case UC_LNX:
PLAY_SONG(song_lnx);
break;
# endif
# ifdef UNICODE_SONG_WIN
static float song_win[][2] = UNICODE_SONG_WIN;
case UC_WIN:
PLAY_SONG(song_win);
break;
# endif
# ifdef UNICODE_SONG_BSD
static float song_bsd[][2] = UNICODE_SONG_BSD;
case UC_BSD:
PLAY_SONG(song_bsd);
break;
# endif
# ifdef UNICODE_SONG_WINC
static float song_winc[][2] = UNICODE_SONG_WINC;
case UC_WINC:
PLAY_SONG(song_winc);
break;
# endif
}
#endif
}
// clang-format on
bool process_unicode_common(uint16_t keycode, keyrecord_t *record) {
if (record->event.pressed) {
bool shifted = get_mods() & MOD_MASK_SHIFT;
switch (keycode) {
case UNICODE_MODE_FORWARD:
cycle_unicode_input_mode(shifted ? -1 : +1);
audio_helper();
break;
case UNICODE_MODE_REVERSE:
cycle_unicode_input_mode(shifted ? +1 : -1);
audio_helper();
break;
case UNICODE_MODE_MAC ... UNICODE_MODE_WINC: {
// Keycodes and input modes follow the same ordering
uint8_t delta = keycode - UNICODE_MODE_MAC;
set_unicode_input_mode(UC_MAC + delta);
audio_helper();
break;
}
}
}
#if defined(UNICODE_ENABLE)
return process_unicode(keycode, record);
#elif defined(UNICODEMAP_ENABLE)
return process_unicodemap(keycode, record);
#elif defined(UCIS_ENABLE)
return process_ucis(keycode, record);
#else
return true;
#endif
}