mirror of
https://github.com/Keychron/qmk_firmware.git
synced 2024-12-25 18:48:05 +06:00
0fab3bbde3
* Line ending stuff again * Added Let's Split Eh? Files and updated #USE_IC2 checks to also include th EH revision (can only be used in I2C) * Added personal keymap, updated some of the EH files * Created new keyboard file for testing "lets_split_eh" will merge into lets_split once fully functional * Added split code from lets_split, removed pro micro imports and LED code THIS IS WORKING CODE, WITHOUT RGB AND BACKLIGHT * Took back original Lets Slit files for the lets_split keyboard, working in the lets_split_eh folder for now * Updated eh.c * More rework of the I2C code, added global flags for split boards. * Introduced RGB over I2C, having weird edge case issues at the moment though * Fixed weird I2C edgecase with RGB, although still would like to track down route cause.. * Changed RGB keycodes (static ones) to activate on key-up instead of key-down to elimate weird ghosting issue over I2C * Lots of changes, mainly externalized the Split keyboard code and added logic for only including when needed. - Added makefile option "SPLIT_KEYBOARD" that when = yes will include the split keyboard files and custom matrix - Split keyboard files placed into quantum/split_common/ - Added define option for config files "SPLIT_HAND_PIN" FOr using high/low pin to determine handedness, low = right hand, high = left hand - Cleaned up split logic for RGB and Backlight so it is only exectuted / included when needed * Updated documentation for the new makefile options and #defines specific to split keyboards * Added a bit more info to docs, so people aren't confused * Modifed Let's Split to use externalized code, also added left and right hand eeprom files to the split_common folder * Removed some debugging from eh.c * Small changes to keyboard configs. Also added a default keymap (just a copy of my that_canadian keymap). * Added a README file to the Let's Split Eh? * Changed it so RGB static updates are done on key-up ONLY for split boards rather than all boards. Also fixed leftover un-used variable in rgblight.c * Updated default keymap and my keymap for Let's Split Eh? Updated the comments so it reflects RGB control, and removed audio functions. * Fixed lets_split_eh not having a default version * Removed "eh" references from lets_split folder for now * Took lets_split folder from master to fix travis build errors, weird my local was overriding. * Changed LAYOUT_ortho_4x12_kc -> LAYOUT_kc_ortho_4x12 to match bakingpy and others * Removed rules.mk from my lets_split keymap, not needed * Updated the config_options doc to better explain the usage of "#define SPLIT_HAND_PIN"
229 lines
4.7 KiB
C
229 lines
4.7 KiB
C
/*
|
|
* WARNING: be careful changing this code, it is very timing dependent
|
|
*/
|
|
|
|
#ifndef F_CPU
|
|
#define F_CPU 16000000
|
|
#endif
|
|
|
|
#include <avr/io.h>
|
|
#include <avr/interrupt.h>
|
|
#include <util/delay.h>
|
|
#include <stdbool.h>
|
|
#include "serial.h"
|
|
|
|
#ifndef USE_I2C
|
|
|
|
// Serial pulse period in microseconds. Its probably a bad idea to lower this
|
|
// value.
|
|
#define SERIAL_DELAY 24
|
|
|
|
uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
|
|
uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
|
|
|
|
#define SLAVE_DATA_CORRUPT (1<<0)
|
|
volatile uint8_t status = 0;
|
|
|
|
inline static
|
|
void serial_delay(void) {
|
|
_delay_us(SERIAL_DELAY);
|
|
}
|
|
|
|
inline static
|
|
void serial_output(void) {
|
|
SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
|
|
}
|
|
|
|
// make the serial pin an input with pull-up resistor
|
|
inline static
|
|
void serial_input(void) {
|
|
SERIAL_PIN_DDR &= ~SERIAL_PIN_MASK;
|
|
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
|
|
}
|
|
|
|
inline static
|
|
uint8_t serial_read_pin(void) {
|
|
return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
|
|
}
|
|
|
|
inline static
|
|
void serial_low(void) {
|
|
SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
|
|
}
|
|
|
|
inline static
|
|
void serial_high(void) {
|
|
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
|
|
}
|
|
|
|
void serial_master_init(void) {
|
|
serial_output();
|
|
serial_high();
|
|
}
|
|
|
|
void serial_slave_init(void) {
|
|
serial_input();
|
|
|
|
// Enable INT0
|
|
EIMSK |= _BV(INT0);
|
|
// Trigger on falling edge of INT0
|
|
EICRA &= ~(_BV(ISC00) | _BV(ISC01));
|
|
}
|
|
|
|
// Used by the master to synchronize timing with the slave.
|
|
static
|
|
void sync_recv(void) {
|
|
serial_input();
|
|
// This shouldn't hang if the slave disconnects because the
|
|
// serial line will float to high if the slave does disconnect.
|
|
while (!serial_read_pin());
|
|
serial_delay();
|
|
}
|
|
|
|
// Used by the slave to send a synchronization signal to the master.
|
|
static
|
|
void sync_send(void) {
|
|
serial_output();
|
|
|
|
serial_low();
|
|
serial_delay();
|
|
|
|
serial_high();
|
|
}
|
|
|
|
// Reads a byte from the serial line
|
|
static
|
|
uint8_t serial_read_byte(void) {
|
|
uint8_t byte = 0;
|
|
serial_input();
|
|
for ( uint8_t i = 0; i < 8; ++i) {
|
|
byte = (byte << 1) | serial_read_pin();
|
|
serial_delay();
|
|
_delay_us(1);
|
|
}
|
|
|
|
return byte;
|
|
}
|
|
|
|
// Sends a byte with MSB ordering
|
|
static
|
|
void serial_write_byte(uint8_t data) {
|
|
uint8_t b = 8;
|
|
serial_output();
|
|
while( b-- ) {
|
|
if(data & (1 << b)) {
|
|
serial_high();
|
|
} else {
|
|
serial_low();
|
|
}
|
|
serial_delay();
|
|
}
|
|
}
|
|
|
|
// interrupt handle to be used by the slave device
|
|
ISR(SERIAL_PIN_INTERRUPT) {
|
|
sync_send();
|
|
|
|
uint8_t checksum = 0;
|
|
for (int i = 0; i < SERIAL_SLAVE_BUFFER_LENGTH; ++i) {
|
|
serial_write_byte(serial_slave_buffer[i]);
|
|
sync_send();
|
|
checksum += serial_slave_buffer[i];
|
|
}
|
|
serial_write_byte(checksum);
|
|
sync_send();
|
|
|
|
// wait for the sync to finish sending
|
|
serial_delay();
|
|
|
|
// read the middle of pulses
|
|
_delay_us(SERIAL_DELAY/2);
|
|
|
|
uint8_t checksum_computed = 0;
|
|
for (int i = 0; i < SERIAL_MASTER_BUFFER_LENGTH; ++i) {
|
|
serial_master_buffer[i] = serial_read_byte();
|
|
sync_send();
|
|
checksum_computed += serial_master_buffer[i];
|
|
}
|
|
uint8_t checksum_received = serial_read_byte();
|
|
sync_send();
|
|
|
|
serial_input(); // end transaction
|
|
|
|
if ( checksum_computed != checksum_received ) {
|
|
status |= SLAVE_DATA_CORRUPT;
|
|
} else {
|
|
status &= ~SLAVE_DATA_CORRUPT;
|
|
}
|
|
}
|
|
|
|
inline
|
|
bool serial_slave_DATA_CORRUPT(void) {
|
|
return status & SLAVE_DATA_CORRUPT;
|
|
}
|
|
|
|
// Copies the serial_slave_buffer to the master and sends the
|
|
// serial_master_buffer to the slave.
|
|
//
|
|
// Returns:
|
|
// 0 => no error
|
|
// 1 => slave did not respond
|
|
int serial_update_buffers(void) {
|
|
// this code is very time dependent, so we need to disable interrupts
|
|
cli();
|
|
|
|
// signal to the slave that we want to start a transaction
|
|
serial_output();
|
|
serial_low();
|
|
_delay_us(1);
|
|
|
|
// wait for the slaves response
|
|
serial_input();
|
|
serial_high();
|
|
_delay_us(SERIAL_DELAY);
|
|
|
|
// check if the slave is present
|
|
if (serial_read_pin()) {
|
|
// slave failed to pull the line low, assume not present
|
|
sei();
|
|
return 1;
|
|
}
|
|
|
|
// if the slave is present syncronize with it
|
|
sync_recv();
|
|
|
|
uint8_t checksum_computed = 0;
|
|
// receive data from the slave
|
|
for (int i = 0; i < SERIAL_SLAVE_BUFFER_LENGTH; ++i) {
|
|
serial_slave_buffer[i] = serial_read_byte();
|
|
sync_recv();
|
|
checksum_computed += serial_slave_buffer[i];
|
|
}
|
|
uint8_t checksum_received = serial_read_byte();
|
|
sync_recv();
|
|
|
|
if (checksum_computed != checksum_received) {
|
|
sei();
|
|
return 1;
|
|
}
|
|
|
|
uint8_t checksum = 0;
|
|
// send data to the slave
|
|
for (int i = 0; i < SERIAL_MASTER_BUFFER_LENGTH; ++i) {
|
|
serial_write_byte(serial_master_buffer[i]);
|
|
sync_recv();
|
|
checksum += serial_master_buffer[i];
|
|
}
|
|
serial_write_byte(checksum);
|
|
sync_recv();
|
|
|
|
// always, release the line when not in use
|
|
serial_output();
|
|
serial_high();
|
|
|
|
sei();
|
|
return 0;
|
|
}
|
|
|
|
#endif
|