keychron_qmk_firmware/keyboards/annepro2/annepro2.c
James Young 7d60a141a2
Anne Pro 2 Refactor (#16864)
* move RGB Matrix rules to keyboard level

* move PERMISSIVE_HOLD config to keyboard level

* annepro2.c: convert tabs to spaces

* refactor rules.mk files

Reformats each version's `rules.mk` file to be arranged more similarly to those of the rest of the keyboards in QMK.

No logic change.

* annepro2.c: allow compilation without RGB Matrix

Wraps the `led_enabled` definition and the `KC_AP_RGB_*` keycodes in `#ifdef RGB_MATRIX_ENABLE`, allowing successful compilation if the user sets `RGB_MATRIX_ENABLE = no`.

* rework readme files

Reworks the main `readme.md` file to be more friendly to GitHub viewing, and removes the single-line version-specific readme files (exposes the main readme to QMK Configurator users).

* info.json: update maintainer value

* info.json: apply friendly formatting
2022-04-17 12:53:59 -07:00

299 lines
8.9 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright 2021 OpenAnnePro community
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hal.h"
#include "annepro2.h"
#include "annepro2_ble.h"
#include "spi_master.h"
#include "ap2_led.h"
#include "protocol.h"
#define RAM_MAGIC_LOCATION 0x20001ffc
#define IAP_MAGIC_VALUE 0x0000fab2
static const SerialConfig led_uart_init_config = {
.speed = 115200,
};
#ifndef LED_UART_BAUD_RATE
# define LED_UART_BAUD_RATE 115200
#endif // LED_UART_BAUD_RATE
static const SerialConfig led_uart_runtine_config = {
.speed = LED_UART_BAUD_RATE,
};
static const SerialConfig ble_uart_config = {
.speed = 115200,
};
static uint8_t led_mcu_wakeup[11] = {0x7b, 0x10, 0x43, 0x10, 0x03, 0x00, 0x00, 0x7d, 0x02, 0x01, 0x02};
ble_capslock_t ble_capslock = {._dummy = {0}, .caps_lock = false};
#ifdef RGB_MATRIX_ENABLE
static uint8_t led_enabled = 1;
static uint8_t current_rgb_row = 0;
#endif
void bootloader_jump(void) {
// Send msg to shine to boot into IAP
ap2_set_IAP();
// wait for shine to boot into IAP
wait_ms(15);
// Load ble into IAP
annepro2_ble_bootload();
wait_ms(15);
// Magic key to set keyboard to IAP
// Its from reversing original boot loader
// If value is that it stays in boot loader aka IAP
*((uint32_t *)RAM_MAGIC_LOCATION) = IAP_MAGIC_VALUE;
// Load the main MCU into IAP
__disable_irq();
NVIC_SystemReset();
}
void keyboard_pre_init_kb(void) {
// Start LED UART
sdStart(&SD0, &led_uart_init_config);
/* Let the LED chip settle a bit before switching the mode.
* That helped at least one person. */
wait_ms(15);
sdWrite(&SD0, led_mcu_wakeup, sizeof(led_mcu_wakeup));
// wait to receive response from wakeup
wait_ms(15);
proto_init(&proto, led_command_callback);
// loop to clear out receive buffer from shine wakeup
while (!sdGetWouldBlock(&SD0)) sdGet(&SD0);
sdStart(&SD0, &led_uart_runtine_config);
keyboard_pre_init_user();
}
void keyboard_post_init_kb(void) {
// Start BLE UART
sdStart(&SD1, &ble_uart_config);
annepro2_ble_startup();
// Give the send uart thread some time to
// send out the queue before we read back
wait_ms(100);
// loop to clear out receive buffer from ble wakeup
while (!sdGetWouldBlock(&SD1)) sdGet(&SD1);
ap2_led_get_status();
#ifdef RGB_MATRIX_ENABLE
ap2_led_enable();
#endif
keyboard_post_init_user();
}
void matrix_scan_kb() {
// if there's stuff on the ble serial buffer
// read it into the capslock struct
while (!sdGetWouldBlock(&SD1)) {
sdReadTimeout(&SD1, (uint8_t *)&ble_capslock, sizeof(ble_capslock_t), 10);
}
/* While there's data from LED keyboard sent - read it. */
while (!sdGetWouldBlock(&SD0)) {
uint8_t byte = sdGet(&SD0);
proto_consume(&proto, byte);
}
#ifdef RGB_MATRIX_ENABLE
/* If there's data ready to be sent to LED MCU - send it. */
if(rgb_row_changed[current_rgb_row])
{
rgb_row_changed[current_rgb_row] = 0;
ap2_led_mask_set_row(current_rgb_row);
}
current_rgb_row = (current_rgb_row + 1) % NUM_ROW;
#endif
matrix_scan_user();
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
if (record->event.pressed) {
if (ap2_led_status.matrix_enabled && ap2_led_status.is_reactive) {
ap2_led_forward_keypress(record->event.key.row, record->event.key.col);
}
const ap2_led_t blue = {
.p.blue = 0xff,
.p.red = 0x00,
.p.green = 0x00,
.p.alpha = 0xff,
};
switch (keycode) {
case KC_AP2_BT1:
annepro2_ble_broadcast(0);
/* FIXME: This hardcodes col/row position */
ap2_led_blink(0, 1, blue, 8, 50);
return false;
case KC_AP2_BT2:
annepro2_ble_broadcast(1);
ap2_led_blink(0, 2, blue, 8, 50);
return false;
case KC_AP2_BT3:
annepro2_ble_broadcast(2);
ap2_led_blink(0, 3, blue, 8, 50);
return false;
case KC_AP2_BT4:
annepro2_ble_broadcast(3);
ap2_led_blink(0, 4, blue, 8, 50);
return false;
case KC_AP2_USB:
annepro2_ble_disconnect();
return false;
case KC_AP2_BT_UNPAIR:
annepro2_ble_unpair();
return false;
case KC_AP_LED_OFF:
ap2_led_disable();
break;
case KC_AP_LED_ON:
if (ap2_led_status.matrix_enabled) {
ap2_led_next_profile();
} else {
ap2_led_enable();
}
ap2_led_reset_foreground_color();
break;
case KC_AP_LED_TOG:
if (ap2_led_status.matrix_enabled) {
ap2_led_disable();
} else {
ap2_led_enable();
ap2_led_reset_foreground_color();
}
break;
case KC_AP_LED_NEXT_PROFILE:
ap2_led_next_profile();
ap2_led_reset_foreground_color();
break;
case KC_AP_LED_PREV_PROFILE:
ap2_led_prev_profile();
ap2_led_reset_foreground_color();
break;
case KC_AP_LED_NEXT_INTENSITY:
ap2_led_next_intensity();
ap2_led_reset_foreground_color();
return false;
case KC_AP_LED_SPEED:
ap2_led_next_animation_speed();
ap2_led_reset_foreground_color();
return false;
#ifdef RGB_MATRIX_ENABLE
case RGB_TOG:
if(rgb_matrix_is_enabled()) ap2_led_disable();
else ap2_led_enable();
return true;
case KC_AP_RGB_VAI:
if (record->event.pressed) {
if (get_mods() & MOD_MASK_SHIFT) {
rgb_matrix_increase_hue();
return false;
} else if (get_mods() & MOD_MASK_CTRL) {
rgb_matrix_decrease_hue();
return false;
} else {
rgb_matrix_increase_val();
}
}
return true;
case KC_AP_RGB_VAD:
if (record->event.pressed) {
if (get_mods() & MOD_MASK_SHIFT) {
rgb_matrix_increase_sat();
return false;
} else if (get_mods() & MOD_MASK_CTRL) {
rgb_matrix_decrease_sat();
return false;
} else {
rgb_matrix_decrease_val();
}
}
return true;
case KC_AP_RGB_TOG:
if (record->event.pressed) {
if (get_mods() & MOD_MASK_SHIFT) {
rgb_matrix_increase_speed();
return false;
} else if (get_mods() & MOD_MASK_CTRL) {
rgb_matrix_decrease_speed();
return false;
} else {
if (led_enabled) {
ap2_led_disable();
rgb_matrix_disable();
led_enabled = 0;
} else {
ap2_led_enable();
rgb_matrix_enable();
led_enabled = 1;
}
return true;
}
}
return true;
case KC_AP_RGB_MOD:
if (record->event.pressed) {
if (get_mods() & MOD_MASK_CTRL) {
rgb_matrix_step_reverse();
return false;
} else {
rgb_matrix_step();
}
}
return true;
#endif
default:
break;
}
}
return process_record_user(keycode, record);
}