keychron_qmk_firmware/keyboards/handwired/owlet60/matrix.c

316 lines
7.5 KiB
C

/*
Copyright 2019 worthlessowl
based on work by:
Jun Wako <wakojun@gmail.com>
Cole Markham <cole@ccmcomputing.net>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include "owlet60.h"
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "config.h"
#include "timer.h"
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
# define matrix_bitpop(i) bitpop16(matrix[i])
# define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
# define matrix_bitpop(i) bitpop32(matrix[i])
# define ROW_SHIFTER ((uint32_t)1)
#endif
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_select_pins[3] = MATRIX_COL_SELECT_PINS;
static const uint8_t dat_pin = MATRIX_COL_DATA_PIN;
/* matrix state(1:on, 0:off) */
static matrix_row_t raw_matrix[MATRIX_ROWS]; //raw values
static matrix_row_t matrix[MATRIX_ROWS]; //raw values
/* 2d array containing binary representation of its index */
static const uint8_t num_in_binary[8][3] = {
{0, 0, 0},
{0, 0, 1},
{0, 1, 0},
{0, 1, 1},
{1, 0, 0},
{1, 0, 1},
{1, 1, 0},
{1, 1, 1},
};
static void select_col_analog(uint8_t col);
static void mux_pin_control(const uint8_t binary[]);
void debounce_init(uint8_t num_rows);
void debounce(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, bool changed);
__attribute__ ((weak))
void matrix_init_user(void) {}
__attribute__ ((weak))
void matrix_scan_user(void) {}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
// Matrix mask lets you disable switches in the returned matrix data. For example, if you have a
// switch blocker installed and the switch is always pressed.
#ifdef MATRIX_MASKED
return matrix[row] & matrix_mask[row];
#else
return matrix[row];
#endif
}
void matrix_print(void)
{
print_matrix_header();
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
print_matrix_row(row);
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += matrix_bitpop(i);
}
return count;
}
// uses standard row code
static void select_row(uint8_t row)
{
setPinOutput(row_pins[row]);
writePinLow(row_pins[row]);
}
static void unselect_row(uint8_t row)
{
setPinInputHigh(row_pins[row]);
}
static void unselect_rows(void)
{
for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
setPinInputHigh(row_pins[x]);
}
}
static void init_pins(void) { // still need some fixing, this might not work
unselect_rows(); // with the loop
/*
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
setPinInputHigh(col_pins[x]);
}
*/
setPinInputHigh(dat_pin);
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
// Clear data in matrix row
current_matrix[current_row] = 0;
// Select row and wait for row selecton to stabilize
select_row(current_row);
wait_us(30);
// For each col...
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
// Select the col pin to read (active low)
select_col_analog(col_index);
wait_us(30);
uint8_t pin_state = readPin(dat_pin);
// Populate the matrix row with the state of the col pin
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
// Unselect row
unselect_row(current_row);
return (last_row_value != current_matrix[current_row]);
}
void matrix_init(void) {
// initialize key pins
init_pins();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
raw_matrix[i] = 0;
matrix[i] = 0;
}
debounce_init(MATRIX_ROWS);
matrix_init_quantum();
setPinInput(D5);
writePinLow(D5);
setPinInput(B0);
writePinLow(B0);
}
// modified for per col read matrix scan
uint8_t matrix_scan(void)
{
bool changed = false;
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
changed |= read_cols_on_row(raw_matrix, current_row);
}
debounce(raw_matrix, matrix, MATRIX_ROWS, changed);
matrix_scan_quantum();
return (uint8_t)changed;
}
/*
uint8_t matrix_scan(void)
{
bool changed = false;
#if (DIODE_DIRECTION == COL2ROW)
// Set row, read cols
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
changed |= read_cols_on_row(raw_matrix, current_row);
}
#endif
debounce(raw_matrix, matrix, MATRIX_ROWS, changed);
matrix_scan_quantum();
return (uint8_t)changed;
}
*/
static void select_col_analog(uint8_t col) {
switch(col) {
case 0:
mux_pin_control(num_in_binary[0]);
break;
case 1:
mux_pin_control(num_in_binary[1]);
break;
case 2:
mux_pin_control(num_in_binary[2]);
break;
case 3:
mux_pin_control(num_in_binary[3]);
break;
case 4:
mux_pin_control(num_in_binary[4]);
break;
case 5:
mux_pin_control(num_in_binary[5]);
break;
case 6:
mux_pin_control(num_in_binary[6]);
break;
case 7:
mux_pin_control(num_in_binary[7]);
break;
default:
break;
}
}
static void mux_pin_control(const uint8_t binary[]) {
// set pin0
setPinOutput(col_select_pins[0]);
if(binary[2] == 0) {
writePinLow(col_select_pins[0]);
}
else {
writePinHigh(col_select_pins[0]);
}
// set pin1
setPinOutput(col_select_pins[1]);
if(binary[1] == 0) {
writePinLow(col_select_pins[1]);
}
else {
writePinHigh(col_select_pins[1]);
}
// set pin2
setPinOutput(col_select_pins[2]);
if(binary[0] == 0) {
writePinLow(col_select_pins[2]);
}
else {
writePinHigh(col_select_pins[2]);
}
}