mirror of
https://github.com/Keychron/qmk_firmware.git
synced 2024-11-23 00:47:02 +06:00
8e3cbe030c
* Add Wasdat controller * Add reset instructions * Clarify ANSI & ISO support
485 lines
11 KiB
C
485 lines
11 KiB
C
/*
|
|
Copyright 2012-2018 Jun Wako, Jack Humbert, Yiancar
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include "wait.h"
|
|
#include "print.h"
|
|
#include "debug.h"
|
|
#include "util.h"
|
|
#include "matrix.h"
|
|
#include "debounce.h"
|
|
#include "quantum.h"
|
|
|
|
#if (MATRIX_COLS <= 8)
|
|
# define print_matrix_header() print("\nr/c 01234567\n")
|
|
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop(matrix[i])
|
|
# define ROW_SHIFTER ((uint8_t)1)
|
|
#elif (MATRIX_COLS <= 16)
|
|
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
|
|
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop16(matrix[i])
|
|
# define ROW_SHIFTER ((uint16_t)1)
|
|
#elif (MATRIX_COLS <= 32)
|
|
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
|
|
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop32(matrix[i])
|
|
# define ROW_SHIFTER ((uint32_t)1)
|
|
#endif
|
|
|
|
#ifdef MATRIX_MASKED
|
|
extern const matrix_row_t matrix_mask[];
|
|
#endif
|
|
|
|
#ifdef DIRECT_PINS
|
|
static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS;
|
|
#elif (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
|
|
static const pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
|
|
//static const pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
|
|
#endif
|
|
|
|
/* matrix state(1:on, 0:off) */
|
|
static matrix_row_t raw_matrix[MATRIX_ROWS]; //raw values
|
|
static matrix_row_t matrix[MATRIX_ROWS]; //debounced values
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_init_quantum(void) {
|
|
matrix_init_kb();
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_scan_quantum(void) {
|
|
matrix_scan_kb();
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_init_kb(void) {
|
|
matrix_init_user();
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_scan_kb(void) {
|
|
matrix_scan_user();
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_init_user(void) {
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_scan_user(void) {
|
|
}
|
|
|
|
inline
|
|
uint8_t matrix_rows(void) {
|
|
return MATRIX_ROWS;
|
|
}
|
|
|
|
inline
|
|
uint8_t matrix_cols(void) {
|
|
return MATRIX_COLS;
|
|
}
|
|
|
|
//Deprecated.
|
|
bool matrix_is_modified(void)
|
|
{
|
|
if (debounce_active()) return false;
|
|
return true;
|
|
}
|
|
|
|
inline
|
|
bool matrix_is_on(uint8_t row, uint8_t col)
|
|
{
|
|
return (matrix[row] & ((matrix_row_t)1<<col));
|
|
}
|
|
|
|
inline
|
|
matrix_row_t matrix_get_row(uint8_t row)
|
|
{
|
|
// Matrix mask lets you disable switches in the returned matrix data. For example, if you have a
|
|
// switch blocker installed and the switch is always pressed.
|
|
#ifdef MATRIX_MASKED
|
|
return matrix[row] & matrix_mask[row];
|
|
#else
|
|
return matrix[row];
|
|
#endif
|
|
}
|
|
|
|
void matrix_print(void)
|
|
{
|
|
print_matrix_header();
|
|
|
|
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
|
|
phex(row); print(": ");
|
|
print_matrix_row(row);
|
|
print("\n");
|
|
}
|
|
}
|
|
|
|
uint8_t matrix_key_count(void)
|
|
{
|
|
uint8_t count = 0;
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
count += matrix_bitpop(i);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
#ifdef DIRECT_PINS
|
|
|
|
static void init_pins(void) {
|
|
for (int row = 0; row < MATRIX_ROWS; row++) {
|
|
for (int col = 0; col < MATRIX_COLS; col++) {
|
|
pin_t pin = direct_pins[row][col];
|
|
if (pin != NO_PIN) {
|
|
setPinInputHigh(pin);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
|
|
matrix_row_t last_row_value = current_matrix[current_row];
|
|
current_matrix[current_row] = 0;
|
|
|
|
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
|
|
pin_t pin = direct_pins[current_row][col_index];
|
|
if (pin != NO_PIN) {
|
|
current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index);
|
|
}
|
|
}
|
|
|
|
return (last_row_value != current_matrix[current_row]);
|
|
}
|
|
|
|
#elif (DIODE_DIRECTION == COL2ROW)
|
|
|
|
static void select_row(uint8_t row)
|
|
{
|
|
setPinOutput(row_pins[row]);
|
|
writePinLow(row_pins[row]);
|
|
}
|
|
|
|
static void unselect_row(uint8_t row)
|
|
{
|
|
setPinInputHigh(row_pins[row]);
|
|
}
|
|
|
|
static void unselect_rows(void)
|
|
{
|
|
for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
|
|
setPinInput(row_pins[x]);
|
|
}
|
|
}
|
|
|
|
static void init_pins(void) {
|
|
unselect_rows();
|
|
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
|
|
setPinInputHigh(col_pins[x]);
|
|
}
|
|
}
|
|
|
|
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
|
|
{
|
|
// Store last value of row prior to reading
|
|
matrix_row_t last_row_value = current_matrix[current_row];
|
|
|
|
// Clear data in matrix row
|
|
current_matrix[current_row] = 0;
|
|
|
|
// Select row and wait for row selecton to stabilize
|
|
select_row(current_row);
|
|
wait_us(30);
|
|
|
|
// For each col...
|
|
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
|
|
|
|
// Select the col pin to read (active low)
|
|
uint8_t pin_state = readPin(col_pins[col_index]);
|
|
|
|
// Populate the matrix row with the state of the col pin
|
|
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
|
|
}
|
|
|
|
// Unselect row
|
|
unselect_row(current_row);
|
|
|
|
return (last_row_value != current_matrix[current_row]);
|
|
}
|
|
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
/* Cols 0 - 15
|
|
* col 0: C7
|
|
* col 1: B6
|
|
* col 2: C6
|
|
* col 3: B4
|
|
* col 4: B5
|
|
* col 5: D7
|
|
* These columns use a 74HC237D 3 to 8 bit demultiplexer.
|
|
* A0 A1 A2
|
|
* col / pin: PD2 PD1 PD0
|
|
* 6: 1 1 1
|
|
* 7: 0 1 1
|
|
* 8: 1 0 1
|
|
* 9: 0 0 1
|
|
* 10: 1 1 0
|
|
* 11: 0 1 0
|
|
* 12: 1 0 0
|
|
* col 13: D3
|
|
* col 14: B7
|
|
* col 15: B3
|
|
*/
|
|
static void select_col(uint8_t col)
|
|
{
|
|
switch (col) {
|
|
case 0:
|
|
writePinLow(C7);
|
|
break;
|
|
case 1:
|
|
writePinLow(B6);
|
|
break;
|
|
case 2:
|
|
writePinLow(C6);
|
|
break;
|
|
case 3:
|
|
writePinLow(B4);
|
|
break;
|
|
case 4:
|
|
writePinLow(B5);
|
|
break;
|
|
case 5:
|
|
writePinLow(D7);
|
|
break;
|
|
case 6:
|
|
writePinHigh(D0);
|
|
writePinHigh(D1);
|
|
writePinHigh(D2);
|
|
break;
|
|
case 7:
|
|
writePinHigh(D0);
|
|
writePinHigh(D1);
|
|
break;
|
|
case 8:
|
|
writePinHigh(D0);
|
|
writePinHigh(D2);
|
|
break;
|
|
case 9:
|
|
writePinHigh(D0);
|
|
break;
|
|
case 10:
|
|
writePinHigh(D1);
|
|
writePinHigh(D2);
|
|
break;
|
|
case 11:
|
|
writePinHigh(D1);
|
|
break;
|
|
case 12:
|
|
writePinHigh(D2);
|
|
break;
|
|
case 13:
|
|
writePinLow(D3);
|
|
break;
|
|
case 14:
|
|
writePinLow(B7);
|
|
break;
|
|
case 15:
|
|
writePinLow(B3);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void unselect_col(uint8_t col)
|
|
{
|
|
switch (col) {
|
|
case 0:
|
|
writePinHigh(C7);
|
|
break;
|
|
case 1:
|
|
writePinHigh(B6);
|
|
break;
|
|
case 2:
|
|
writePinHigh(C6);
|
|
break;
|
|
case 3:
|
|
writePinHigh(B4);
|
|
break;
|
|
case 4:
|
|
writePinHigh(B5);
|
|
break;
|
|
case 5:
|
|
writePinHigh(D7);
|
|
break;
|
|
case 6:
|
|
writePinLow(D0);
|
|
writePinLow(D1);
|
|
writePinLow(D2);
|
|
break;
|
|
case 7:
|
|
writePinLow(D0);
|
|
writePinLow(D1);
|
|
break;
|
|
case 8:
|
|
writePinLow(D0);
|
|
writePinLow(D2);
|
|
break;
|
|
case 9:
|
|
writePinLow(D0);
|
|
break;
|
|
case 10:
|
|
writePinLow(D1);
|
|
writePinLow(D2);
|
|
break;
|
|
case 11:
|
|
writePinLow(D1);
|
|
break;
|
|
case 12:
|
|
writePinLow(D2);
|
|
break;
|
|
case 13:
|
|
writePinHigh(D3);
|
|
break;
|
|
case 14:
|
|
writePinHigh(B7);
|
|
break;
|
|
case 15:
|
|
writePinHigh(B3);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void unselect_cols(void)
|
|
{
|
|
//Native
|
|
setPinOutput(D3);
|
|
setPinOutput(D7);
|
|
writePinHigh(D3);
|
|
writePinHigh(D7);
|
|
|
|
setPinOutput(C6);
|
|
setPinOutput(C7);
|
|
writePinHigh(C6);
|
|
writePinHigh(C7);
|
|
|
|
setPinOutput(B3);
|
|
setPinOutput(B4);
|
|
setPinOutput(B5);
|
|
setPinOutput(B6);
|
|
setPinOutput(B7);
|
|
writePinHigh(B3);
|
|
writePinHigh(B4);
|
|
writePinHigh(B5);
|
|
writePinHigh(B6);
|
|
writePinHigh(B7);
|
|
|
|
//Demultiplexer
|
|
setPinOutput(D0);
|
|
setPinOutput(D1);
|
|
setPinOutput(D2);
|
|
writePinLow(D0);
|
|
writePinLow(D1);
|
|
writePinLow(D2);
|
|
}
|
|
|
|
static void init_pins(void) {
|
|
unselect_cols();
|
|
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
|
|
setPinInputHigh(row_pins[x]);
|
|
}
|
|
}
|
|
|
|
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
|
|
{
|
|
bool matrix_changed = false;
|
|
|
|
// Select col and wait for col selecton to stabilize
|
|
select_col(current_col);
|
|
wait_us(30);
|
|
|
|
// For each row...
|
|
for(uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++)
|
|
{
|
|
|
|
// Store last value of row prior to reading
|
|
matrix_row_t last_row_value = current_matrix[row_index];
|
|
|
|
// Check row pin state
|
|
if (readPin(row_pins[row_index]) == 0)
|
|
{
|
|
// Pin LO, set col bit
|
|
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
|
|
}
|
|
else
|
|
{
|
|
// Pin HI, clear col bit
|
|
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
|
|
}
|
|
|
|
// Determine if the matrix changed state
|
|
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
|
|
{
|
|
matrix_changed = true;
|
|
}
|
|
}
|
|
|
|
// Unselect col
|
|
unselect_col(current_col);
|
|
|
|
return matrix_changed;
|
|
}
|
|
|
|
#endif
|
|
|
|
void matrix_init(void) {
|
|
|
|
// initialize key pins
|
|
init_pins();
|
|
|
|
// initialize matrix state: all keys off
|
|
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
|
|
raw_matrix[i] = 0;
|
|
matrix[i] = 0;
|
|
}
|
|
|
|
debounce_init(MATRIX_ROWS);
|
|
|
|
matrix_init_quantum();
|
|
}
|
|
|
|
uint8_t matrix_scan(void)
|
|
{
|
|
bool changed = false;
|
|
|
|
#if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW)
|
|
// Set row, read cols
|
|
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
|
|
changed |= read_cols_on_row(raw_matrix, current_row);
|
|
}
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
// Set col, read rows
|
|
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
|
|
changed |= read_rows_on_col(raw_matrix, current_col);
|
|
}
|
|
#endif
|
|
|
|
debounce(raw_matrix, matrix, MATRIX_ROWS, changed);
|
|
|
|
matrix_scan_quantum();
|
|
return 1;
|
|
}
|