keychron_qmk_firmware/keyboards
Jack Humbert 65faab3b89 Moves features to their own files (process_*), adds tap dance feature (#460)
* non-working commit

* working

* subprojects implemented for planck

* pass a subproject variable through to c

* consolidates clueboard revisions

* thanks for letting me know about conflicts..

* turn off audio for yang's

* corrects starting paths for subprojects

* messing around with travis

* semicolon

* travis script

* travis script

* script for travis

* correct directory (probably), amend files to commit

* remove origin before adding

* git pull, correct syntax

* git checkout

* git pull origin branch

* where are we?

* where are we?

* merging

* force things to happen

* adds commit message, adds add

* rebase, no commit message

* rebase branch

* idk!

* try just pull

* fetch - merge

* specify repo branch

* checkout

* goddammit

* merge? idk

* pls

* after all

* don't split up keyboards

* syntax

* adds quick for all-keyboards

* trying out new script

* script update

* lowercase

* all keyboards

* stop replacing compiled.hex automatically

* adds if statement

* skip automated build branches

* forces push to automated build branch

* throw an add in there

* upstream?

* adds AUTOGEN

* ignore all .hex files again

* testing out new repo

* global ident

* generate script, keyboard_keymap.hex

* skip generation for now, print pandoc info, submodule update

* try trusty

* and sudo

* try generate

* updates subprojects to keyboards

* no idea

* updates to keyboards

* cleans up clueboard stuff

* setup to use local readme

* updates cluepad, planck experimental

* remove extra led.c [ci skip]

* audio and midi moved over to separate files

* chording, leader, unicode separated

* consolidate each [skip ci]

* correct include

* quantum: Add a tap dance feature (#451)

* quantum: Add a tap dance feature

With this feature one can specify keys that behave differently, based on
the amount of times they have been tapped, and when interrupted, they
get handled before the interrupter.

To make it clear how this is different from `ACTION_FUNCTION_TAP`, lets
explore a certain setup! We want one key to send `Space` on single tap,
but `Enter` on double-tap.

With `ACTION_FUNCTION_TAP`, it is quite a rain-dance to set this up, and
has the problem that when the sequence is interrupted, the interrupting
key will be send first. Thus, `SPC a` will result in `a SPC` being sent,
if they are typed within `TAPPING_TERM`. With the tap dance feature,
that'll come out as `SPC a`, correctly.

The implementation hooks into two parts of the system, to achieve this:
into `process_record_quantum()`, and the matrix scan. We need the latter
to be able to time out a tap sequence even when a key is not being
pressed, so `SPC` alone will time out and register after `TAPPING_TERM`
time.

But lets start with how to use it, first!

First, you will need `TAP_DANCE_ENABLE=yes` in your `Makefile`, because
the feature is disabled by default. This adds a little less than 1k to
the firmware size. Next, you will want to define some tap-dance keys,
which is easiest to do with the `TD()` macro, that - similar to `F()`,
takes a number, which will later be used as an index into the
`tap_dance_actions` array.

This array specifies what actions shall be taken when a tap-dance key is
in action. Currently, there are two possible options:

* `ACTION_TAP_DANCE_DOUBLE(kc1, kc2)`: Sends the `kc1` keycode when
  tapped once, `kc2` otherwise.
* `ACTION_TAP_DANCE_FN(fn)`: Calls the specified function - defined in
  the user keymap - with the current state of the tap-dance action.

The first option is enough for a lot of cases, that just want dual
roles. For example, `ACTION_TAP_DANCE(KC_SPC, KC_ENT)` will result in
`Space` being sent on single-tap, `Enter` otherwise.

And that's the bulk of it!

Do note, however, that this implementation does have some consequences:
keys do not register until either they reach the tapping ceiling, or
they time out. This means that if you hold the key, nothing happens, no
repeat, no nothing. It is possible to detect held state, and register an
action then too, but that's not implemented yet. Keys also unregister
immediately after being registered, so you can't even hold the second
tap. This is intentional, to be consistent.

And now, on to the explanation of how it works!

The main entry point is `process_tap_dance()`, called from
`process_record_quantum()`, which is run for every keypress, and our
handler gets to run early. This function checks whether the key pressed
is a tap-dance key. If it is not, and a tap-dance was in action, we
handle that first, and enqueue the newly pressed key. If it is a
tap-dance key, then we check if it is the same as the already active
one (if there's one active, that is). If it is not, we fire off the old
one first, then register the new one. If it was the same, we increment
the counter and the timer.

This means that you have `TAPPING_TERM` time to tap the key again, you
do not have to input all the taps within that timeframe. This allows for
longer tap counts, with minimal impact on responsiveness.

Our next stop is `matrix_scan_tap_dance()`. This handles the timeout of
tap-dance keys.

For the sake of flexibility, tap-dance actions can be either a pair of
keycodes, or a user function. The latter allows one to handle higher tap
counts, or do extra things, like blink the LEDs, fiddle with the
backlighting, and so on. This is accomplished by using an union, and
some clever macros.

In the end, lets see a full example!

```c
enum {
 CT_SE = 0,
 CT_CLN,
 CT_EGG
};

/* Have the above three on the keymap, TD(CT_SE), etc... */

void dance_cln (qk_tap_dance_state_t *state) {
  if (state->count == 1) {
    register_code (KC_RSFT);
    register_code (KC_SCLN);
    unregister_code (KC_SCLN);
    unregister_code (KC_RSFT);
  } else {
    register_code (KC_SCLN);
    unregister_code (KC_SCLN);
    reset_tap_dance (state);
  }
}

void dance_egg (qk_tap_dance_state_t *state) {
  if (state->count >= 100) {
    SEND_STRING ("Safety dance!");
    reset_tap_dance (state);
  }
}

const qk_tap_dance_action_t tap_dance_actions[] = {
  [CT_SE]  = ACTION_TAP_DANCE_DOUBLE (KC_SPC, KC_ENT)
 ,[CT_CLN] = ACTION_TAP_DANCE_FN (dance_cln)
 ,[CT_EGG] = ACTION_TAP_DANCE_FN (dance_egg)
};
```

This addresses #426.

Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>

* hhkb: Fix the build with the new tap-dance feature

Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>

* tap_dance: Move process_tap_dance further down

Process the tap dance stuff after midi and audio, because those don't
process keycodes, but row/col positions.

Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>

* tap_dance: Use conditionals instead of dummy functions

To be consistent with how the rest of the quantum features are
implemented, use ifdefs instead of dummy functions.

Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>

* Merge branch 'master' into quantum-keypress-process

# Conflicts:
#	Makefile
#	keyboards/planck/rev3/config.h
#	keyboards/planck/rev4/config.h

* update build script
2016-06-29 17:49:41 -04:00
..
alps64 Moves features to their own files (process_*), adds tap dance feature (#460) 2016-06-29 17:49:41 -04:00
arrow_pad Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
atomic Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
atreus Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
bantam44 Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
clueboard Moves features to their own files (process_*), adds tap dance feature (#460) 2016-06-29 17:49:41 -04:00
clueboard2 Implements subprojects and updates projects for this (#459) 2016-06-29 16:21:41 -04:00
cluepad Implements subprojects and updates projects for this (#459) 2016-06-29 16:21:41 -04:00
ergodox_ez Moves features to their own files (process_*), adds tap dance feature (#460) 2016-06-29 17:49:41 -04:00
gh60 Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
hhkb Moves features to their own files (process_*), adds tap dance feature (#460) 2016-06-29 17:49:41 -04:00
jd45 Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
kc60 Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
phantom Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
planck Moves features to their own files (process_*), adds tap dance feature (#460) 2016-06-29 17:49:41 -04:00
preonic Preonic keymap update 2016-06-26 16:16:21 -04:00
retro_refit Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
satan Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
sixkeyboard Moves features to their own files (process_*), adds tap dance feature (#460) 2016-06-29 17:49:41 -04:00
readme.md Implements subprojects and updates projects for this (#459) 2016-06-29 16:21:41 -04:00

Included Keyboards

QMK runs on a diverse range of keyboards. Some of these keyboards are officially supported and see constant community contributions, while others are part of the repository for historical reasons.

Official QMK Keyboards

These keyboards are manufactured by the maintainers of QMK.

Ortholinear Keyboards - Jack Humbert

What makes OLKB keyboards shine is a combo of lean aesthetics, compact size, and killer tactile feel. These are available through olkb.com as well as through Massdrop from time to time, as easy to assemble kits.

  • Planck - A 40% DIY powerhouse of customizability and modification capability. It's a lean, mean, typing machine.
  • Preonic - Like the Planck, but bigger. 50%.
  • Atomic - Imagine the size of the Planck. Now imagine the size of the Preonic. Now imagine bigger. That is the Atomic. A 60% keyboard.

ErgoDox EZ - Erez Zukerman

Made in Taiwan using advanced robotic manufacturing, the ErgoDox EZ is a fully-assembled, premium ergonomic keyboard. Its split design allows you to place both halves shoulder width, and its custom-made wrist rests and tilt/tent kit make for incredibly comfortable typing. Available on ergodox-ez.com.

  • ErgoDox EZ - Our one and only product. Yes, it's that awesome. Comes with either printed or blank keycaps, and 7 different keyswitch types.

Clueboard - Zach White

Designed and built in Felton, CA, Clueboards keyboard emphasize quality and locally sourced components, available on clueboard.co

  • Clueboard - The 66% custom keyboard.
  • Cluepad - A mechanical numpad with QMK superpowers.

Community-supported QMK Keyboards

These keyboards are part of the QMK repository, but their manufacturers are not official maintainers of the repository.

  • alps64 — A 60% keyboard for Alps keyswitches.
  • arrow_pad — A custom creation by IBNobody.
  • atreus — Made by Technomancy.
  • bantam44 — It is a 44-key 40% staggered keyboard.
  • gh60 — A 60% Geekhack community-driven project.
  • hhkb — The Happy Hacking keyboard can be hacked with a custom controller to run QMK.
  • jd45 — Another Geekhack community project, designed by jdcarpe.
  • kc60 — A programmable Chinese-made keyboard, lost in the mists of time.
  • phantom — A tenkeyless kit by Teel, also from Geekhack.
  • retro_refit — Another creation by IBNobody.
  • satan — A GH60 variant.
  • sixkeyboard — A 6-key keyboard made by TechKeys.