keychron_qmk_firmware/quantum/quantum.c
fredizzimo 53ff8a31b6 Merge ChibiOS and LUFA descriptor support (#2362)
* Move lufa descriptor to protocol/usb_descriptor

* Try to compile usb_descriptor on ChibiOS

* Add lufa_utils for ChibiOS

Lufa USB descriptors for ChibiOS

* More lufa_util compatibility fixes

* First compiling version of shared USB descriptor

* Send the usb descriptors

* Fix the CONSOLE output on ChibiOS

* Add errors for unsupported interfaces

* Enable support for vitual serial port USB descriptors

* Implement virtual serial port for ChibiOS

* Cleanup the lufa_utils

Use the default lufa header files

* Add raw hid support for ChibiOS

This is completely untested

* Enable midi compilation on ChibiOS

* Move midi functionality out of lufa.c

* Don't register sysex callback when not needed

* ChibiOS compilation fixes

* Update ChibiOS submodule

* Fix the Midi USB descriptor

It didn't work properly when both Midi and Virtual serial port was enabled.

* Add MIDI support for ChibiOS

* Fix USB descriptor strings on ChibiOS

* Use serial usb driver for raw hid

* Generalize the ChibiOS stream like drivers

This makes the initialization much more simple and eliminates a lot of
the code duplication.

* Convert console output to chibios stream driver

* Fixes for ChibiOS update

* Update the ChibiOS contrib submodule

To include the usb data toggle synchronization fixes

* Fix duplicate reset enumeration on ChibiOS

* Add missing include

* Add number of endpoints check for ChibiOS

* Enable serial USB driver on all keyboards

* Add missing includes when API is enabled withot midi

* Add another missing inlcude
2018-02-08 15:07:46 -05:00

1249 lines
32 KiB
C

/* Copyright 2016-2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "quantum.h"
#ifdef PROTOCOL_LUFA
#include "outputselect.h"
#endif
#ifndef TAPPING_TERM
#define TAPPING_TERM 200
#endif
#ifndef BREATHING_PERIOD
#define BREATHING_PERIOD 6
#endif
#include "backlight.h"
extern backlight_config_t backlight_config;
#ifdef FAUXCLICKY_ENABLE
#include "fauxclicky.h"
#endif
#ifdef API_ENABLE
#include "api.h"
#endif
#ifdef MIDI_ENABLE
#include "process_midi.h"
#endif
#ifdef AUDIO_ENABLE
#ifndef GOODBYE_SONG
#define GOODBYE_SONG SONG(GOODBYE_SOUND)
#endif
#ifndef AG_NORM_SONG
#define AG_NORM_SONG SONG(AG_NORM_SOUND)
#endif
#ifndef AG_SWAP_SONG
#define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
#endif
float goodbye_song[][2] = GOODBYE_SONG;
float ag_norm_song[][2] = AG_NORM_SONG;
float ag_swap_song[][2] = AG_SWAP_SONG;
#ifdef DEFAULT_LAYER_SONGS
float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
#endif
#endif
static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
switch (code) {
case QK_MODS ... QK_MODS_MAX:
break;
default:
return;
}
if (code & QK_LCTL)
f(KC_LCTL);
if (code & QK_LSFT)
f(KC_LSFT);
if (code & QK_LALT)
f(KC_LALT);
if (code & QK_LGUI)
f(KC_LGUI);
if (code < QK_RMODS_MIN) return;
if (code & QK_RCTL)
f(KC_RCTL);
if (code & QK_RSFT)
f(KC_RSFT);
if (code & QK_RALT)
f(KC_RALT);
if (code & QK_RGUI)
f(KC_RGUI);
}
static inline void qk_register_weak_mods(uint8_t kc) {
add_weak_mods(MOD_BIT(kc));
send_keyboard_report();
}
static inline void qk_unregister_weak_mods(uint8_t kc) {
del_weak_mods(MOD_BIT(kc));
send_keyboard_report();
}
static inline void qk_register_mods(uint8_t kc) {
add_weak_mods(MOD_BIT(kc));
send_keyboard_report();
}
static inline void qk_unregister_mods(uint8_t kc) {
del_weak_mods(MOD_BIT(kc));
send_keyboard_report();
}
void register_code16 (uint16_t code) {
if (IS_MOD(code) || code == KC_NO) {
do_code16 (code, qk_register_mods);
} else {
do_code16 (code, qk_register_weak_mods);
}
register_code (code);
}
void unregister_code16 (uint16_t code) {
unregister_code (code);
if (IS_MOD(code) || code == KC_NO) {
do_code16 (code, qk_unregister_mods);
} else {
do_code16 (code, qk_unregister_weak_mods);
}
}
__attribute__ ((weak))
bool process_action_kb(keyrecord_t *record) {
return true;
}
__attribute__ ((weak))
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
return process_record_user(keycode, record);
}
__attribute__ ((weak))
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
return true;
}
void reset_keyboard(void) {
clear_keyboard();
#if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
process_midi_all_notes_off();
#endif
#if defined(AUDIO_ENABLE)
music_all_notes_off();
uint16_t timer_start = timer_read();
PLAY_SONG(goodbye_song);
shutdown_user();
while(timer_elapsed(timer_start) < 250)
wait_ms(1);
stop_all_notes();
#else
wait_ms(250);
#endif
// this is also done later in bootloader.c - not sure if it's neccesary here
#ifdef BOOTLOADER_CATERINA
*(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
#endif
bootloader_jump();
}
// Shift / paren setup
#ifndef LSPO_KEY
#define LSPO_KEY KC_9
#endif
#ifndef RSPC_KEY
#define RSPC_KEY KC_0
#endif
// Shift / Enter setup
#ifndef SFTENT_KEY
#define SFTENT_KEY KC_ENT
#endif
static bool shift_interrupted[2] = {0, 0};
static uint16_t scs_timer[2] = {0, 0};
/* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
* Used to ensure that the correct keycode is released if the key is released.
*/
static bool grave_esc_was_shifted = false;
bool process_record_quantum(keyrecord_t *record) {
/* This gets the keycode from the key pressed */
keypos_t key = record->event.key;
uint16_t keycode;
#if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
/* TODO: Use store_or_get_action() or a similar function. */
if (!disable_action_cache) {
uint8_t layer;
if (record->event.pressed) {
layer = layer_switch_get_layer(key);
update_source_layers_cache(key, layer);
} else {
layer = read_source_layers_cache(key);
}
keycode = keymap_key_to_keycode(layer, key);
} else
#endif
keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
// This is how you use actions here
// if (keycode == KC_LEAD) {
// action_t action;
// action.code = ACTION_DEFAULT_LAYER_SET(0);
// process_action(record, action);
// return false;
// }
#ifdef TAP_DANCE_ENABLE
preprocess_tap_dance(keycode, record);
#endif
if (!(
#if defined(KEY_LOCK_ENABLE)
// Must run first to be able to mask key_up events.
process_key_lock(&keycode, record) &&
#endif
process_record_kb(keycode, record) &&
#if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
process_midi(keycode, record) &&
#endif
#ifdef AUDIO_ENABLE
process_audio(keycode, record) &&
#endif
#ifdef STENO_ENABLE
process_steno(keycode, record) &&
#endif
#if defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))
process_music(keycode, record) &&
#endif
#ifdef TAP_DANCE_ENABLE
process_tap_dance(keycode, record) &&
#endif
#ifndef DISABLE_LEADER
process_leader(keycode, record) &&
#endif
#ifndef DISABLE_CHORDING
process_chording(keycode, record) &&
#endif
#ifdef COMBO_ENABLE
process_combo(keycode, record) &&
#endif
#ifdef UNICODE_ENABLE
process_unicode(keycode, record) &&
#endif
#ifdef UCIS_ENABLE
process_ucis(keycode, record) &&
#endif
#ifdef PRINTING_ENABLE
process_printer(keycode, record) &&
#endif
#ifdef AUTO_SHIFT_ENABLE
process_auto_shift(keycode, record) &&
#endif
#ifdef UNICODEMAP_ENABLE
process_unicode_map(keycode, record) &&
#endif
#ifdef TERMINAL_ENABLE
process_terminal(keycode, record) &&
#endif
true)) {
return false;
}
// Shift / paren setup
switch(keycode) {
case RESET:
if (record->event.pressed) {
reset_keyboard();
}
return false;
case DEBUG:
if (record->event.pressed) {
debug_enable = true;
print("DEBUG: enabled.\n");
}
return false;
#ifdef FAUXCLICKY_ENABLE
case FC_TOG:
if (record->event.pressed) {
FAUXCLICKY_TOGGLE;
}
return false;
case FC_ON:
if (record->event.pressed) {
FAUXCLICKY_ON;
}
return false;
case FC_OFF:
if (record->event.pressed) {
FAUXCLICKY_OFF;
}
return false;
#endif
#ifdef RGBLIGHT_ENABLE
case RGB_TOG:
if (record->event.pressed) {
rgblight_toggle();
}
return false;
case RGB_MODE_FORWARD:
if (record->event.pressed) {
uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
if(shifted) {
rgblight_step_reverse();
}
else {
rgblight_step();
}
}
return false;
case RGB_MODE_REVERSE:
if (record->event.pressed) {
uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
if(shifted) {
rgblight_step();
}
else {
rgblight_step_reverse();
}
}
return false;
case RGB_HUI:
if (record->event.pressed) {
rgblight_increase_hue();
}
return false;
case RGB_HUD:
if (record->event.pressed) {
rgblight_decrease_hue();
}
return false;
case RGB_SAI:
if (record->event.pressed) {
rgblight_increase_sat();
}
return false;
case RGB_SAD:
if (record->event.pressed) {
rgblight_decrease_sat();
}
return false;
case RGB_VAI:
if (record->event.pressed) {
rgblight_increase_val();
}
return false;
case RGB_VAD:
if (record->event.pressed) {
rgblight_decrease_val();
}
return false;
case RGB_MODE_PLAIN:
if (record->event.pressed) {
rgblight_mode(1);
}
return false;
case RGB_MODE_BREATHE:
if (record->event.pressed) {
if ((2 <= rgblight_get_mode()) && (rgblight_get_mode() < 5)) {
rgblight_step();
} else {
rgblight_mode(2);
}
}
return false;
case RGB_MODE_RAINBOW:
if (record->event.pressed) {
if ((6 <= rgblight_get_mode()) && (rgblight_get_mode() < 8)) {
rgblight_step();
} else {
rgblight_mode(6);
}
}
return false;
case RGB_MODE_SWIRL:
if (record->event.pressed) {
if ((9 <= rgblight_get_mode()) && (rgblight_get_mode() < 14)) {
rgblight_step();
} else {
rgblight_mode(9);
}
}
return false;
case RGB_MODE_SNAKE:
if (record->event.pressed) {
if ((15 <= rgblight_get_mode()) && (rgblight_get_mode() < 20)) {
rgblight_step();
} else {
rgblight_mode(15);
}
}
return false;
case RGB_MODE_KNIGHT:
if (record->event.pressed) {
if ((21 <= rgblight_get_mode()) && (rgblight_get_mode() < 23)) {
rgblight_step();
} else {
rgblight_mode(21);
}
}
return false;
case RGB_MODE_XMAS:
if (record->event.pressed) {
rgblight_mode(24);
}
return false;
case RGB_MODE_GRADIENT:
if (record->event.pressed) {
if ((25 <= rgblight_get_mode()) && (rgblight_get_mode() < 34)) {
rgblight_step();
} else {
rgblight_mode(25);
}
}
return false;
#endif
#ifdef PROTOCOL_LUFA
case OUT_AUTO:
if (record->event.pressed) {
set_output(OUTPUT_AUTO);
}
return false;
case OUT_USB:
if (record->event.pressed) {
set_output(OUTPUT_USB);
}
return false;
#ifdef BLUETOOTH_ENABLE
case OUT_BT:
if (record->event.pressed) {
set_output(OUTPUT_BLUETOOTH);
}
return false;
#endif
#endif
case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
if (record->event.pressed) {
// MAGIC actions (BOOTMAGIC without the boot)
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
/* keymap config */
keymap_config.raw = eeconfig_read_keymap();
switch (keycode)
{
case MAGIC_SWAP_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = true;
break;
case MAGIC_CAPSLOCK_TO_CONTROL:
keymap_config.capslock_to_control = true;
break;
case MAGIC_SWAP_LALT_LGUI:
keymap_config.swap_lalt_lgui = true;
break;
case MAGIC_SWAP_RALT_RGUI:
keymap_config.swap_ralt_rgui = true;
break;
case MAGIC_NO_GUI:
keymap_config.no_gui = true;
break;
case MAGIC_SWAP_GRAVE_ESC:
keymap_config.swap_grave_esc = true;
break;
case MAGIC_SWAP_BACKSLASH_BACKSPACE:
keymap_config.swap_backslash_backspace = true;
break;
case MAGIC_HOST_NKRO:
keymap_config.nkro = true;
break;
case MAGIC_SWAP_ALT_GUI:
keymap_config.swap_lalt_lgui = true;
keymap_config.swap_ralt_rgui = true;
#ifdef AUDIO_ENABLE
PLAY_SONG(ag_swap_song);
#endif
break;
case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = false;
break;
case MAGIC_UNCAPSLOCK_TO_CONTROL:
keymap_config.capslock_to_control = false;
break;
case MAGIC_UNSWAP_LALT_LGUI:
keymap_config.swap_lalt_lgui = false;
break;
case MAGIC_UNSWAP_RALT_RGUI:
keymap_config.swap_ralt_rgui = false;
break;
case MAGIC_UNNO_GUI:
keymap_config.no_gui = false;
break;
case MAGIC_UNSWAP_GRAVE_ESC:
keymap_config.swap_grave_esc = false;
break;
case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
keymap_config.swap_backslash_backspace = false;
break;
case MAGIC_UNHOST_NKRO:
keymap_config.nkro = false;
break;
case MAGIC_UNSWAP_ALT_GUI:
keymap_config.swap_lalt_lgui = false;
keymap_config.swap_ralt_rgui = false;
#ifdef AUDIO_ENABLE
PLAY_SONG(ag_norm_song);
#endif
break;
case MAGIC_TOGGLE_NKRO:
keymap_config.nkro = !keymap_config.nkro;
break;
default:
break;
}
eeconfig_update_keymap(keymap_config.raw);
clear_keyboard(); // clear to prevent stuck keys
return false;
}
break;
case KC_LSPO: {
if (record->event.pressed) {
shift_interrupted[0] = false;
scs_timer[0] = timer_read ();
register_mods(MOD_BIT(KC_LSFT));
}
else {
#ifdef DISABLE_SPACE_CADET_ROLLOVER
if (get_mods() & MOD_BIT(KC_RSFT)) {
shift_interrupted[0] = true;
shift_interrupted[1] = true;
}
#endif
if (!shift_interrupted[0] && timer_elapsed(scs_timer[0]) < TAPPING_TERM) {
register_code(LSPO_KEY);
unregister_code(LSPO_KEY);
}
unregister_mods(MOD_BIT(KC_LSFT));
}
return false;
}
case KC_RSPC: {
if (record->event.pressed) {
shift_interrupted[1] = false;
scs_timer[1] = timer_read ();
register_mods(MOD_BIT(KC_RSFT));
}
else {
#ifdef DISABLE_SPACE_CADET_ROLLOVER
if (get_mods() & MOD_BIT(KC_LSFT)) {
shift_interrupted[0] = true;
shift_interrupted[1] = true;
}
#endif
if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
register_code(RSPC_KEY);
unregister_code(RSPC_KEY);
}
unregister_mods(MOD_BIT(KC_RSFT));
}
return false;
}
case KC_SFTENT: {
if (record->event.pressed) {
shift_interrupted[1] = false;
scs_timer[1] = timer_read ();
register_mods(MOD_BIT(KC_RSFT));
}
else if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
unregister_mods(MOD_BIT(KC_RSFT));
register_code(SFTENT_KEY);
unregister_code(SFTENT_KEY);
}
else {
unregister_mods(MOD_BIT(KC_RSFT));
}
return false;
}
case GRAVE_ESC: {
uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
|MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));
#ifdef GRAVE_ESC_ALT_OVERRIDE
// if ALT is pressed, ESC is always sent
// this is handy for the cmd+opt+esc shortcut on macOS, among other things.
if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
shifted = 0;
}
#endif
#ifdef GRAVE_ESC_CTRL_OVERRIDE
// if CTRL is pressed, ESC is always sent
// this is handy for the ctrl+shift+esc shortcut on windows, among other things.
if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
shifted = 0;
}
#endif
#ifdef GRAVE_ESC_GUI_OVERRIDE
// if GUI is pressed, ESC is always sent
if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
shifted = 0;
}
#endif
#ifdef GRAVE_ESC_SHIFT_OVERRIDE
// if SHIFT is pressed, ESC is always sent
if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
shifted = 0;
}
#endif
if (record->event.pressed) {
grave_esc_was_shifted = shifted;
add_key(shifted ? KC_GRAVE : KC_ESCAPE);
}
else {
del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
}
send_keyboard_report();
return false;
}
#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
case BL_BRTG: {
if (record->event.pressed)
breathing_toggle();
return false;
}
#endif
default: {
shift_interrupted[0] = true;
shift_interrupted[1] = true;
break;
}
}
return process_action_kb(record);
}
__attribute__ ((weak))
const bool ascii_to_shift_lut[0x80] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 0
};
__attribute__ ((weak))
const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0,
KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, KC_ESC, 0, 0, 0, 0,
KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
};
void send_string(const char *str) {
send_string_with_delay(str, 0);
}
void send_string_P(const char *str) {
send_string_with_delay_P(str, 0);
}
void send_string_with_delay(const char *str, uint8_t interval) {
while (1) {
char ascii_code = *str;
if (!ascii_code) break;
if (ascii_code == 1) {
// tap
uint8_t keycode = *(++str);
register_code(keycode);
unregister_code(keycode);
} else if (ascii_code == 2) {
// down
uint8_t keycode = *(++str);
register_code(keycode);
} else if (ascii_code == 3) {
// up
uint8_t keycode = *(++str);
unregister_code(keycode);
} else {
send_char(ascii_code);
}
++str;
// interval
{ uint8_t ms = interval; while (ms--) wait_ms(1); }
}
}
void send_string_with_delay_P(const char *str, uint8_t interval) {
while (1) {
char ascii_code = pgm_read_byte(str);
if (!ascii_code) break;
if (ascii_code == 1) {
// tap
uint8_t keycode = pgm_read_byte(++str);
register_code(keycode);
unregister_code(keycode);
} else if (ascii_code == 2) {
// down
uint8_t keycode = pgm_read_byte(++str);
register_code(keycode);
} else if (ascii_code == 3) {
// up
uint8_t keycode = pgm_read_byte(++str);
unregister_code(keycode);
} else {
send_char(ascii_code);
}
++str;
// interval
{ uint8_t ms = interval; while (ms--) wait_ms(1); }
}
}
void send_char(char ascii_code) {
uint8_t keycode;
keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
if (pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code])) {
register_code(KC_LSFT);
register_code(keycode);
unregister_code(keycode);
unregister_code(KC_LSFT);
} else {
register_code(keycode);
unregister_code(keycode);
}
}
void set_single_persistent_default_layer(uint8_t default_layer) {
#if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
PLAY_SONG(default_layer_songs[default_layer]);
#endif
eeconfig_update_default_layer(1U<<default_layer);
default_layer_set(1U<<default_layer);
}
void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
if (IS_LAYER_ON(layer1) && IS_LAYER_ON(layer2)) {
layer_on(layer3);
} else {
layer_off(layer3);
}
}
void tap_random_base64(void) {
#if defined(__AVR_ATmega32U4__)
uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
#else
uint8_t key = rand() % 64;
#endif
switch (key) {
case 0 ... 25:
register_code(KC_LSFT);
register_code(key + KC_A);
unregister_code(key + KC_A);
unregister_code(KC_LSFT);
break;
case 26 ... 51:
register_code(key - 26 + KC_A);
unregister_code(key - 26 + KC_A);
break;
case 52:
register_code(KC_0);
unregister_code(KC_0);
break;
case 53 ... 61:
register_code(key - 53 + KC_1);
unregister_code(key - 53 + KC_1);
break;
case 62:
register_code(KC_LSFT);
register_code(KC_EQL);
unregister_code(KC_EQL);
unregister_code(KC_LSFT);
break;
case 63:
register_code(KC_SLSH);
unregister_code(KC_SLSH);
break;
}
}
void matrix_init_quantum() {
#ifdef BACKLIGHT_ENABLE
backlight_init_ports();
#endif
#ifdef AUDIO_ENABLE
audio_init();
#endif
matrix_init_kb();
}
void matrix_scan_quantum() {
#ifdef AUDIO_ENABLE
matrix_scan_music();
#endif
#ifdef TAP_DANCE_ENABLE
matrix_scan_tap_dance();
#endif
#ifdef COMBO_ENABLE
matrix_scan_combo();
#endif
#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
backlight_task();
#endif
matrix_scan_kb();
}
#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
static const uint8_t backlight_pin = BACKLIGHT_PIN;
// depending on the pin, we use a different output compare unit
#if BACKLIGHT_PIN == B7
# define COM1x1 COM1C1
# define OCR1x OCR1C
#elif BACKLIGHT_PIN == B6
# define COM1x1 COM1B1
# define OCR1x OCR1B
#elif BACKLIGHT_PIN == B5
# define COM1x1 COM1A1
# define OCR1x OCR1A
#else
# define NO_HARDWARE_PWM
#endif
#ifndef BACKLIGHT_ON_STATE
#define BACKLIGHT_ON_STATE 0
#endif
#ifdef NO_HARDWARE_PWM // pwm through software
__attribute__ ((weak))
void backlight_init_ports(void)
{
// Setup backlight pin as output and output to on state.
// DDRx |= n
_SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
#if BACKLIGHT_ON_STATE == 0
// PORTx &= ~n
_SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
#else
// PORTx |= n
_SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
#endif
}
__attribute__ ((weak))
void backlight_set(uint8_t level) {}
uint8_t backlight_tick = 0;
#ifndef BACKLIGHT_CUSTOM_DRIVER
void backlight_task(void) {
if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
#if BACKLIGHT_ON_STATE == 0
// PORTx &= ~n
_SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
#else
// PORTx |= n
_SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
#endif
} else {
#if BACKLIGHT_ON_STATE == 0
// PORTx |= n
_SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
#else
// PORTx &= ~n
_SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
#endif
}
backlight_tick = (backlight_tick + 1) % 16;
}
#endif
#ifdef BACKLIGHT_BREATHING
#ifndef BACKLIGHT_CUSTOM_DRIVER
#error "Backlight breathing only available with hardware PWM. Please disable."
#endif
#endif
#else // pwm through timer
#define TIMER_TOP 0xFFFFU
// See http://jared.geek.nz/2013/feb/linear-led-pwm
static uint16_t cie_lightness(uint16_t v) {
if (v <= 5243) // if below 8% of max
return v / 9; // same as dividing by 900%
else {
uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
// to get a useful result with integer division, we shift left in the expression above
// and revert what we've done again after squaring.
y = y * y * y >> 8;
if (y > 0xFFFFUL) // prevent overflow
return 0xFFFFU;
else
return (uint16_t) y;
}
}
// range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
static inline void set_pwm(uint16_t val) {
OCR1x = val;
}
#ifndef BACKLIGHT_CUSTOM_DRIVER
__attribute__ ((weak))
void backlight_set(uint8_t level) {
if (level > BACKLIGHT_LEVELS)
level = BACKLIGHT_LEVELS;
if (level == 0) {
// Turn off PWM control on backlight pin
TCCR1A &= ~(_BV(COM1x1));
} else {
// Turn on PWM control of backlight pin
TCCR1A |= _BV(COM1x1);
}
// Set the brightness
set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
}
void backlight_task(void) {}
#endif // BACKLIGHT_CUSTOM_DRIVER
#ifdef BACKLIGHT_BREATHING
#define BREATHING_NO_HALT 0
#define BREATHING_HALT_OFF 1
#define BREATHING_HALT_ON 2
#define BREATHING_STEPS 128
static uint8_t breathing_period = BREATHING_PERIOD;
static uint8_t breathing_halt = BREATHING_NO_HALT;
static uint16_t breathing_counter = 0;
bool is_breathing(void) {
return !!(TIMSK1 & _BV(TOIE1));
}
#define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
#define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
#define breathing_min() do {breathing_counter = 0;} while (0)
#define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)
void breathing_enable(void)
{
breathing_counter = 0;
breathing_halt = BREATHING_NO_HALT;
breathing_interrupt_enable();
}
void breathing_pulse(void)
{
if (get_backlight_level() == 0)
breathing_min();
else
breathing_max();
breathing_halt = BREATHING_HALT_ON;
breathing_interrupt_enable();
}
void breathing_disable(void)
{
breathing_interrupt_disable();
// Restore backlight level
backlight_set(get_backlight_level());
}
void breathing_self_disable(void)
{
if (get_backlight_level() == 0)
breathing_halt = BREATHING_HALT_OFF;
else
breathing_halt = BREATHING_HALT_ON;
}
void breathing_toggle(void) {
if (is_breathing())
breathing_disable();
else
breathing_enable();
}
void breathing_period_set(uint8_t value)
{
if (!value)
value = 1;
breathing_period = value;
}
void breathing_period_default(void) {
breathing_period_set(BREATHING_PERIOD);
}
void breathing_period_inc(void)
{
breathing_period_set(breathing_period+1);
}
void breathing_period_dec(void)
{
breathing_period_set(breathing_period-1);
}
/* To generate breathing curve in python:
* from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
*/
static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Use this before the cie_lightness function.
static inline uint16_t scale_backlight(uint16_t v) {
return v / BACKLIGHT_LEVELS * get_backlight_level();
}
/* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
* about 244 times per second.
*/
ISR(TIMER1_OVF_vect)
{
uint16_t interval = (uint16_t) breathing_period * 244 / BREATHING_STEPS;
// resetting after one period to prevent ugly reset at overflow.
breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
uint8_t index = breathing_counter / interval % BREATHING_STEPS;
if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
{
breathing_interrupt_disable();
}
set_pwm(cie_lightness(scale_backlight((uint16_t) pgm_read_byte(&breathing_table[index]) * 0x0101U)));
}
#endif // BACKLIGHT_BREATHING
__attribute__ ((weak))
void backlight_init_ports(void)
{
// Setup backlight pin as output and output to on state.
// DDRx |= n
_SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
#if BACKLIGHT_ON_STATE == 0
// PORTx &= ~n
_SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
#else
// PORTx |= n
_SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
#endif
// I could write a wall of text here to explain... but TL;DW
// Go read the ATmega32u4 datasheet.
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
// Pin PB7 = OCR1C (Timer 1, Channel C)
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// (i.e. start high, go low when counter matches.)
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
/*
14.8.3:
"In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
"In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
*/
TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
// Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
ICR1 = TIMER_TOP;
backlight_init();
#ifdef BACKLIGHT_BREATHING
breathing_enable();
#endif
}
#endif // NO_HARDWARE_PWM
#else // backlight
__attribute__ ((weak))
void backlight_init_ports(void) {}
__attribute__ ((weak))
void backlight_set(uint8_t level) {}
#endif // backlight
// Functions for spitting out values
//
void send_dword(uint32_t number) { // this might not actually work
uint16_t word = (number >> 16);
send_word(word);
send_word(number & 0xFFFFUL);
}
void send_word(uint16_t number) {
uint8_t byte = number >> 8;
send_byte(byte);
send_byte(number & 0xFF);
}
void send_byte(uint8_t number) {
uint8_t nibble = number >> 4;
send_nibble(nibble);
send_nibble(number & 0xF);
}
void send_nibble(uint8_t number) {
switch (number) {
case 0:
register_code(KC_0);
unregister_code(KC_0);
break;
case 1 ... 9:
register_code(KC_1 + (number - 1));
unregister_code(KC_1 + (number - 1));
break;
case 0xA ... 0xF:
register_code(KC_A + (number - 0xA));
unregister_code(KC_A + (number - 0xA));
break;
}
}
__attribute__((weak))
uint16_t hex_to_keycode(uint8_t hex)
{
hex = hex & 0xF;
if (hex == 0x0) {
return KC_0;
} else if (hex < 0xA) {
return KC_1 + (hex - 0x1);
} else {
return KC_A + (hex - 0xA);
}
}
void api_send_unicode(uint32_t unicode) {
#ifdef API_ENABLE
uint8_t chunk[4];
dword_to_bytes(unicode, chunk);
MT_SEND_DATA(DT_UNICODE, chunk, 5);
#endif
}
__attribute__ ((weak))
void led_set_user(uint8_t usb_led) {
}
__attribute__ ((weak))
void led_set_kb(uint8_t usb_led) {
led_set_user(usb_led);
}
__attribute__ ((weak))
void led_init_ports(void)
{
}
__attribute__ ((weak))
void led_set(uint8_t usb_led)
{
// Example LED Code
//
// // Using PE6 Caps Lock LED
// if (usb_led & (1<<USB_LED_CAPS_LOCK))
// {
// // Output high.
// DDRE |= (1<<6);
// PORTE |= (1<<6);
// }
// else
// {
// // Output low.
// DDRE &= ~(1<<6);
// PORTE &= ~(1<<6);
// }
led_set_kb(usb_led);
}
//------------------------------------------------------------------------------
// Override these functions in your keymap file to play different tunes on
// different events such as startup and bootloader jump
__attribute__ ((weak))
void startup_user() {}
__attribute__ ((weak))
void shutdown_user() {}
//------------------------------------------------------------------------------