keychron_qmk_firmware/keyboards/handwired/pterodactyl/matrix.c

528 lines
16 KiB
C

/*
Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
Copyright 2017 Erin Call <hello@erincall.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "action_layer.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "pterodactyl.h"
#include "i2c_master.h"
#include "timer.h"
#define I2C_TIMEOUT 100
#define I2C_ADDR 0b0100000
#define I2C_ADDR_WRITE ( (I2C_ADDR<<1) | I2C_WRITE )
#define I2C_ADDR_READ ( (I2C_ADDR<<1) | I2C_READ )
#define IODIRA 0x00 // i/o direction register
#define IODIRB 0x01
#define GPPUA 0x0C // GPIO pull-up resistor register
#define GPPUB 0x0D
#define GPIOA 0x12 // general purpose i/o port register (write modifies OLAT)
#define GPIOB 0x13
void init_expander(void);
/* Set 0 if debouncing isn't needed */
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
#if (DEBOUNCE > 0)
static uint16_t debouncing_time;
static bool debouncing = false;
#endif
#ifdef MATRIX_MASKED
extern const matrix_row_t matrix_mask[];
#endif
#if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
static const uint8_t onboard_row_pins[MATRIX_ROWS] = MATRIX_ONBOARD_ROW_PINS;
static const uint8_t onboard_col_pins[MATRIX_COLS] = MATRIX_ONBOARD_COL_PINS;
static const bool col_expanded[MATRIX_COLS] = COL_EXPANDED;
#endif
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
#if (DIODE_DIRECTION == COL2ROW)
static const uint8_t expander_col_pins[MATRIX_COLS] = MATRIX_EXPANDER_COL_PINS;
static void init_cols(void);
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
static void unselect_rows(void);
static void select_row(uint8_t row);
static void unselect_row(uint8_t row);
#elif (DIODE_DIRECTION == ROW2COL)
static const uint8_t expander_row_pins[MATRIX_ROWS] = MATRIX_EXPANDER_ROW_PINS;
static void init_rows(void);
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
static void unselect_cols(void);
static void select_col(uint8_t col);
static void unselect_col(uint8_t col);
#endif
static uint8_t expander_reset_loop;
uint8_t expander_status;
uint8_t expander_input_pin_mask;
bool i2c_initialized = false;
#define ROW_SHIFTER ((matrix_row_t)1)
__attribute__ ((weak))
void matrix_init_user(void) {}
__attribute__ ((weak))
void matrix_scan_user(void) {}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
init_expander();
#if (DIODE_DIRECTION == COL2ROW)
unselect_rows();
init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
unselect_cols();
init_rows();
#endif
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
matrix_init_quantum();
}
void init_expander(void) {
if (! i2c_initialized) {
i2c_init();
wait_ms(1000);
}
if (! expander_input_pin_mask) {
#if (DIODE_DIRECTION == COL2ROW)
for (int col = 0; col < MATRIX_COLS; col++) {
if (col_expanded[col]) {
expander_input_pin_mask |= (1 << expander_col_pins[col]);
}
}
#elif (DIODE_DIRECTION == ROW2COL)
for (int row = 0; row < MATRIX_ROWS; row++) {
expander_input_pin_mask |= (1 << expander_row_pins[row]);
}
#endif
}
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(IODIRA, I2C_TIMEOUT); if (expander_status) goto out;
/*
Pin direction and pull-up depends on both the diode direction
and on whether the column register is GPIOA or GPIOB
+-------+---------------+---------------+
| | ROW2COL | COL2ROW |
+-------+---------------+---------------+
| GPIOA | input, output | output, input |
+-------+---------------+---------------+
| GPIOB | output, input | input, output |
+-------+---------------+---------------+
*/
#if (EXPANDER_COL_REGISTER == GPIOA)
# if (DIODE_DIRECTION == COL2ROW)
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
# elif (DIODE_DIRECTION == ROW2COL)
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
# endif
#elif (EXPANDER_COL_REGISTER == GPIOB)
# if (DIODE_DIRECTION == COL2ROW)
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
# elif (DIODE_DIRECTION == ROW2COL)
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
# endif
#endif
i2c_stop();
// set pull-up
// - unused : off : 0
// - input : on : 1
// - driving : off : 0
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(GPPUA, I2C_TIMEOUT); if (expander_status) goto out;
#if (EXPANDER_COL_REGISTER == GPIOA)
# if (DIODE_DIRECTION == COL2ROW)
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
# elif (DIODE_DIRECTION == ROW2COL)
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
# endif
#elif (EXPANDER_COL_REGISTER == GPIOB)
# if (DIODE_DIRECTION == COL2ROW)
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
# elif (DIODE_DIRECTION == ROW2COL)
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
# endif
#endif
out:
i2c_stop();
}
uint8_t matrix_scan(void)
{
if (expander_status) { // if there was an error
if (++expander_reset_loop == 0) {
// since expander_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
// this will be approx bit more frequent than once per second
print("trying to reset expander\n");
init_expander();
if (expander_status) {
print("left side not responding\n");
} else {
print("left side attached\n");
}
}
}
#if (DIODE_DIRECTION == COL2ROW)
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
# if (DEBOUNCE > 0)
bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_cols_on_row(matrix, current_row);
# endif
}
#elif (DIODE_DIRECTION == ROW2COL)
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
# if (DEBOUNCE > 0)
bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_rows_on_col(matrix, current_col);
# endif
}
#endif
# if (DEBOUNCE > 0)
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCE)) {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
debouncing = false;
}
# endif
matrix_scan_quantum();
return 1;
}
bool matrix_is_modified(void) // deprecated and evidently not called.
{
#if (DEBOUNCE > 0)
if (debouncing) return false;
#endif
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & (ROW_SHIFTER << col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
#ifdef MATRIX_MASKED
return matrix[row] & matrix_mask[row];
#else
return matrix[row];
#endif
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
print_hex8(row); print(": ");
print_bin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void) {
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
if (! col_expanded[x]) {
uint8_t pin = onboard_col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
// Clear data in matrix row
current_matrix[current_row] = 0;
// Select row and wait for row selection to stabilize
select_row(current_row);
wait_us(30);
// Read columns from expander, unless it's in an error state
if (! expander_status) {
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(EXPANDER_COL_REGISTER, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_start(I2C_ADDR_READ, I2C_TIMEOUT); if (expander_status) goto out;
current_matrix[current_row] |= (~i2c_read_nack(I2C_TIMEOUT)) & expander_input_pin_mask;
out:
i2c_stop();
}
// Read columns from onboard pins
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
if (! col_expanded[col_index]) {
uint8_t pin = onboard_col_pins[col_index];
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
}
unselect_row(current_row);
return (last_row_value != current_matrix[current_row]);
}
static void select_row(uint8_t row) {
// select on expander, unless it's in an error state
if (! expander_status) {
// set active row low : 0
// set other rows hi-Z : 1
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(EXPANDER_ROW_REGISTER, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(0xFF & ~(1<<row), I2C_TIMEOUT); if (expander_status) goto out;
out:
i2c_stop();
}
// select on teensy
uint8_t pin = onboard_row_pins[row];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_row(uint8_t row)
{
// No need to explicitly unselect expander pins--their I/O state is
// set simultaneously, with a single bitmask sent to i2c_write. When
// select_row selects a single pin, it implicitly unselects all the
// other ones.
// unselect on teensy
uint8_t pin = onboard_row_pins[row];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // LOW
}
static void unselect_rows(void) {
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
unselect_row(x);
}
}
#elif (DIODE_DIRECTION == ROW2COL)
static void init_rows(void)
{
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
uint8_t pin = onboard_row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
{
bool matrix_changed = false;
uint8_t column_state = 0;
//select col and wait for selection to stabilize
select_col(current_col);
wait_us(30);
if (current_col < 6) {
// read rows from expander
if (expander_status) {
// it's already in an error state; nothing we can do
return false;
}
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_write(EXPANDER_ROW_REGISTER, I2C_TIMEOUT); if (expander_status) goto out;
expander_status = i2c_start(I2C_ADDR_READ, I2C_TIMEOUT); if (expander_status) goto out;
column_state = i2c_read_nack(I2C_TIMEOUT);
out:
i2c_stop();
column_state = ~column_state;
} else {
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
if ((_SFR_IO8(onboard_row_pins[current_row] >> 4) & _BV(onboard_row_pins[current_row] & 0xF)) == 0) {
column_state |= (1 << current_row);
}
}
}
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
if (column_state & (1 << current_row)) {
// key closed; set state bit in matrix
current_matrix[current_row] |= (ROW_SHIFTER << current_col);
} else {
// key open; clear state bit in matrix
current_matrix[current_row] &= ~(ROW_SHIFTER << current_col);
}
// Determine whether the matrix changed state
if ((last_row_value != current_matrix[current_row]) && !(matrix_changed))
{
matrix_changed = true;
}
}
unselect_col(current_col);
return matrix_changed;
}
static void select_col(uint8_t col)
{
if (col_expanded[col]) {
// select on expander
if (expander_status) { // if there was an error
// do nothing
} else {
// set active col low : 0
// set other cols hi-Z : 1
expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
expander_status = i2c_write(EXPANDER_COL_REGISTER); if (expander_status) goto out;
expander_status = i2c_write(0xFF & ~(1<<col)); if (expander_status) goto out;
out:
i2c_stop();
}
} else {
// select on teensy
uint8_t pin = onboard_col_pins[col];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
}
static void unselect_col(uint8_t col)
{
if (col_expanded[col]) {
// No need to explicitly unselect expander pins--their I/O state is
// set simultaneously, with a single bitmask sent to i2c_write. When
// select_col selects a single pin, it implicitly unselects all the
// other ones.
} else {
// unselect on teensy
uint8_t pin = onboard_col_pins[col];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static void unselect_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
unselect_col(x);
}
}
#endif