Convert not_so_minidox to SPLIT_KEYBOARD (#15306)

This commit is contained in:
Joel Challis 2021-12-01 11:19:07 +00:00 committed by GitHub
parent 3716e02ff3
commit 3d06860f3c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 21 additions and 929 deletions

View File

@ -40,6 +40,11 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define USE_SERIAL
/*
* Split Keyboard specific options, make sure you have 'SPLIT_KEYBOARD = yes' in your rules.mk, and define SOFT_SERIAL_PIN.
*/
#define SOFT_SERIAL_PIN D0 // or D1, D2, D3, E6
//#define EE_HANDS
#define MASTER_LEFT

View File

@ -1,162 +0,0 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#ifdef USE_I2C
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// Setup twi to run at 100kHz
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_master_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_master_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_reset_state(void) {
TWCR = 0;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

View File

@ -1,46 +0,0 @@
#pragma once
#include <stdint.h>
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
#define SLAVE_BUFFER_SIZE 0x10
// i2c SCL clock frequency
#define SCL_CLOCK 400000L
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);
static inline unsigned char i2c_start_read(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_READ);
}
static inline unsigned char i2c_start_write(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_WRITE);
}
// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();

View File

@ -8,17 +8,10 @@
#define _QWERTY 0
#define _LOWER 1
#define _RAISE 2
#define _ADJUST 16
#define _ADJUST 3
enum custom_keycodes {
QWERTY = SAFE_RANGE,
LOWER,
RAISE,
ADJUST,
};
#define KC_LOWR LOWER
#define KC_RASE RAISE
#define KC_LOWR MO(_LOWER)
#define KC_RASE MO(_RAISE)
#define KC_RST RESET
#define KC_CAD LCTL(LALT(KC_DEL))
@ -72,45 +65,6 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
)
};
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case QWERTY:
if (record->event.pressed) {
set_single_persistent_default_layer(_QWERTY);
}
return false;
break;
case LOWER:
if (record->event.pressed) {
layer_on(_LOWER);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
} else {
layer_off(_LOWER);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
}
return false;
break;
case RAISE:
if (record->event.pressed) {
layer_on(_RAISE);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
} else {
layer_off(_RAISE);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
}
return false;
break;
case ADJUST:
if (record->event.pressed) {
layer_on(_ADJUST);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
} else {
layer_off(_ADJUST);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
}
return false;
break;
}
return true;
layer_state_t layer_state_set_user(layer_state_t state) {
return update_tri_layer_state(state, _RAISE, _LOWER, _ADJUST);
}

View File

@ -1,302 +0,0 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "config.h"
#include "quantum.h"
#ifdef USE_I2C
# include "i2c.h"
#else // USE_SERIAL
# include "serial.h"
#endif
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
#define ERROR_DISCONNECT_COUNT 5
static uint8_t debouncing = DEBOUNCE;
static const int ROWS_PER_HAND = MATRIX_ROWS/2;
static uint8_t error_count = 0;
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
debug_enable = true;
debug_matrix = true;
debug_mouse = true;
// initialize row and col
unselect_rows();
init_cols();
setPinOutput(B0);
setPinOutput(D5);
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
matrix_init_quantum();
}
uint8_t _matrix_scan(void)
{
// Right hand is stored after the left in the matirx so, we need to offset it
int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols();
if (matrix_debouncing[i+offset] != cols) {
matrix_debouncing[i+offset] = cols;
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
matrix[i+offset] = matrix_debouncing[i+offset];
}
}
}
return 1;
}
#ifdef USE_I2C
// Get rows from other half over i2c
int i2c_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) goto i2c_error;
// start of matrix stored at 0x00
err = i2c_master_write(0x00);
if (err) goto i2c_error;
// Start read
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
if (err) goto i2c_error;
if (!err) {
int i;
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
}
matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
i2c_master_stop();
} else {
i2c_error: // the cable is disconnceted, or something else went wrong
i2c_reset_state();
return err;
}
return 0;
}
#else // USE_SERIAL
int serial_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
if (serial_update_buffers()) {
return 1;
}
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = serial_slave_buffer[i];
}
return 0;
}
#endif
uint8_t matrix_scan(void)
{
int ret = _matrix_scan();
#ifdef USE_I2C
if( i2c_transaction() ) {
#else // USE_SERIAL
if( serial_transaction() ) {
#endif
// turn on the indicator led when halves are disconnected
writePinLow(D5);
error_count++;
if (error_count > ERROR_DISCONNECT_COUNT) {
// reset other half if disconnected
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = 0;
}
}
} else {
// turn off the indicator led on no error
writePinHigh(D5);
error_count = 0;
}
matrix_scan_quantum();
return ret;
}
void matrix_slave_scan(void) {
_matrix_scan();
int offset = (isLeftHand) ? 0 : (MATRIX_ROWS / 2);
#ifdef USE_I2C
for (int i = 0; i < ROWS_PER_HAND; ++i) {
/* i2c_slave_buffer[i] = matrix[offset+i]; */
i2c_slave_buffer[i] = matrix[offset+i];
}
#else // USE_SERIAL
for (int i = 0; i < ROWS_PER_HAND; ++i) {
serial_slave_buffer[i] = matrix[offset+i];
}
#endif
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
print_hex8(row); print(": ");
print_bin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
static void init_cols(void)
{
for(int x = 0; x < MATRIX_COLS; x++) {
_SFR_IO8((col_pins[x] >> 4) + 1) &= ~_BV(col_pins[x] & 0xF);
_SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
}
}
static matrix_row_t read_cols(void)
{
matrix_row_t result = 0;
for(int x = 0; x < MATRIX_COLS; x++) {
result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
}
return result;
}
static void unselect_rows(void)
{
for(int x = 0; x < ROWS_PER_HAND; x++) {
_SFR_IO8((row_pins[x] >> 4) + 1) &= ~_BV(row_pins[x] & 0xF);
_SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
}
}
static void select_row(uint8_t row)
{
_SFR_IO8((row_pins[row] >> 4) + 1) |= _BV(row_pins[row] & 0xF);
_SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
}

View File

@ -5,24 +5,19 @@ MCU = atmega32u4
BOOTLOADER = caterina
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
# change yes to no to disable
#
BOOTMAGIC_ENABLE = no # Enable Bootmagic Lite
BOOTMAGIC_ENABLE = yes # Enable Bootmagic Lite
MOUSEKEY_ENABLE = yes # Mouse keys
EXTRAKEY_ENABLE = no # Audio control and System control
EXTRAKEY_ENABLE = yes # Audio control and System control
CONSOLE_ENABLE = no # Console for debug
COMMAND_ENABLE = yes # Commands for debug and configuration
NKRO_ENABLE = no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
AUDIO_ENABLE = no # Audio output
RGBLIGHT_ENABLE = no # Enable WS2812 RGB underlight.
USE_I2C = no
COMMAND_ENABLE = no # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = no # USB Nkey Rollover
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
RGBLIGHT_ENABLE = no # Enable keyboard RGB underglow
AUDIO_ENABLE = no # Audio output
CUSTOM_MATRIX = yes
SRC += matrix.c \
i2c.c \
split_util.c \
serial.c
SPLIT_KEYBOARD = yes

View File

@ -1,228 +0,0 @@
/*
* WARNING: be careful changing this code, it is very timing dependent
*/
#ifndef F_CPU
#define F_CPU 16000000
#endif
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdbool.h>
#include "serial.h"
#ifndef USE_I2C
// Serial pulse period in microseconds. Its probably a bad idea to lower this
// value.
#define SERIAL_DELAY 24
uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
#define SLAVE_DATA_CORRUPT (1<<0)
volatile uint8_t status = 0;
inline static
void serial_delay(void) {
_delay_us(SERIAL_DELAY);
}
inline static
void serial_output(void) {
SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
}
// make the serial pin an input with pull-up resistor
inline static
void serial_input(void) {
SERIAL_PIN_DDR &= ~SERIAL_PIN_MASK;
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}
inline static
uint8_t serial_read_pin(void) {
return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
}
inline static
void serial_low(void) {
SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
}
inline static
void serial_high(void) {
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}
void serial_master_init(void) {
serial_output();
serial_high();
}
void serial_slave_init(void) {
serial_input();
// Enable INT0
EIMSK |= _BV(INT0);
// Trigger on falling edge of INT0
EICRA &= ~(_BV(ISC00) | _BV(ISC01));
}
// Used by the master to synchronize timing with the slave.
static
void sync_recv(void) {
serial_input();
// This shouldn't hang if the slave disconnects because the
// serial line will float to high if the slave does disconnect.
while (!serial_read_pin());
serial_delay();
}
// Used by the slave to send a synchronization signal to the master.
static
void sync_send(void) {
serial_output();
serial_low();
serial_delay();
serial_high();
}
// Reads a byte from the serial line
static
uint8_t serial_read_byte(void) {
uint8_t byte = 0;
serial_input();
for ( uint8_t i = 0; i < 8; ++i) {
byte = (byte << 1) | serial_read_pin();
serial_delay();
_delay_us(1);
}
return byte;
}
// Sends a byte with MSB ordering
static
void serial_write_byte(uint8_t data) {
uint8_t b = 8;
serial_output();
while( b-- ) {
if(data & (1 << b)) {
serial_high();
} else {
serial_low();
}
serial_delay();
}
}
// interrupt handle to be used by the slave device
ISR(SERIAL_PIN_INTERRUPT) {
sync_send();
uint8_t checksum = 0;
for (int i = 0; i < SERIAL_SLAVE_BUFFER_LENGTH; ++i) {
serial_write_byte(serial_slave_buffer[i]);
sync_send();
checksum += serial_slave_buffer[i];
}
serial_write_byte(checksum);
sync_send();
// wait for the sync to finish sending
serial_delay();
// read the middle of pulses
_delay_us(SERIAL_DELAY/2);
uint8_t checksum_computed = 0;
for (int i = 0; i < SERIAL_MASTER_BUFFER_LENGTH; ++i) {
serial_master_buffer[i] = serial_read_byte();
sync_send();
checksum_computed += serial_master_buffer[i];
}
uint8_t checksum_received = serial_read_byte();
sync_send();
serial_input(); // end transaction
if ( checksum_computed != checksum_received ) {
status |= SLAVE_DATA_CORRUPT;
} else {
status &= ~SLAVE_DATA_CORRUPT;
}
}
inline
bool serial_slave_DATA_CORRUPT(void) {
return status & SLAVE_DATA_CORRUPT;
}
// Copies the serial_slave_buffer to the master and sends the
// serial_master_buffer to the slave.
//
// Returns:
// 0 => no error
// 1 => slave did not respond
int serial_update_buffers(void) {
// this code is very time dependent, so we need to disable interrupts
cli();
// signal to the slave that we want to start a transaction
serial_output();
serial_low();
_delay_us(1);
// wait for the slaves response
serial_input();
serial_high();
_delay_us(SERIAL_DELAY);
// check if the slave is present
if (serial_read_pin()) {
// slave failed to pull the line low, assume not present
sei();
return 1;
}
// if the slave is present syncronize with it
sync_recv();
uint8_t checksum_computed = 0;
// receive data from the slave
for (int i = 0; i < SERIAL_SLAVE_BUFFER_LENGTH; ++i) {
serial_slave_buffer[i] = serial_read_byte();
sync_recv();
checksum_computed += serial_slave_buffer[i];
}
uint8_t checksum_received = serial_read_byte();
sync_recv();
if (checksum_computed != checksum_received) {
sei();
return 1;
}
uint8_t checksum = 0;
// send data to the slave
for (int i = 0; i < SERIAL_MASTER_BUFFER_LENGTH; ++i) {
serial_write_byte(serial_master_buffer[i]);
sync_recv();
checksum += serial_master_buffer[i];
}
serial_write_byte(checksum);
sync_recv();
// always, release the line when not in use
serial_output();
serial_high();
sei();
return 0;
}
#endif

View File

@ -1,23 +0,0 @@
#pragma once
#include "config.h"
#include <stdbool.h>
/* TODO: some defines for interrupt setup */
#define SERIAL_PIN_DDR DDRD
#define SERIAL_PIN_PORT PORTD
#define SERIAL_PIN_INPUT PIND
#define SERIAL_PIN_MASK _BV(PD0)
#define SERIAL_PIN_INTERRUPT INT0_vect
#define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
#define SERIAL_MASTER_BUFFER_LENGTH 1
// Buffers for master - slave communication
extern volatile uint8_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH];
extern volatile uint8_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH];
void serial_master_init(void);
void serial_slave_init(void);
int serial_update_buffers(void);
bool serial_slave_data_corrupt(void);

View File

@ -1,84 +0,0 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"
#include "config.h"
#ifdef USE_I2C
# include "i2c.h"
#else
# include "serial.h"
#endif
volatile bool isLeftHand = true;
static void setup_handedness(void) {
#ifdef EE_HANDS
isLeftHand = eeprom_read_byte(EECONFIG_HANDEDNESS);
#else
// I2C_MASTER_RIGHT is deprecated, use MASTER_RIGHT instead, since this works for both serial and i2c
#if defined(I2C_MASTER_RIGHT) || defined(MASTER_RIGHT)
isLeftHand = !has_usb();
#else
isLeftHand = has_usb();
#endif
#endif
}
static void keyboard_master_setup(void) {
#ifdef USE_I2C
i2c_master_init();
#ifdef SSD1306OLED
matrix_master_OLED_init ();
#endif
#else
serial_master_init();
#endif
}
static void keyboard_slave_setup(void) {
#ifdef USE_I2C
i2c_slave_init(SLAVE_I2C_ADDRESS);
#else
serial_slave_init();
#endif
}
bool has_usb(void) {
USBCON |= (1 << OTGPADE); //enables VBUS pad
_delay_us(5);
return (USBSTA & (1<<VBUS)); //checks state of VBUS
}
void split_keyboard_setup(void) {
setup_handedness();
if (has_usb()) {
keyboard_master_setup();
} else {
keyboard_slave_setup();
}
sei();
}
void keyboard_slave_loop(void) {
matrix_init();
while (1) {
matrix_slave_scan();
}
}
// this code runs before the usb and keyboard is initialized
void matrix_setup(void) {
split_keyboard_setup();
if (!has_usb()) {
keyboard_slave_loop();
}
}

View File

@ -1,17 +0,0 @@
#pragma once
#include <stdbool.h>
#include "eeconfig.h"
#define SLAVE_I2C_ADDRESS 0x32
extern volatile bool isLeftHand;
// slave version of matix scan, defined in matrix.c
void matrix_slave_scan(void);
void split_keyboard_setup(void);
bool has_usb(void);
void keyboard_slave_loop(void);
void matrix_master_OLED_init (void);