keychron_qmk_firmware/quantum/matrix.c

322 lines
7.7 KiB
C
Raw Normal View History

2015-08-21 20:46:53 +06:00
/*
Copyright 2012-2018 Jun Wako, Jack Humbert, Yiancar
2015-08-21 20:46:53 +06:00
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
2016-05-24 09:42:21 +06:00
#include "wait.h"
2015-08-21 20:46:53 +06:00
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
Simplify split_common Code significantly (#4772) * Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
2019-01-18 00:08:14 +06:00
#include "debounce.h"
#include "quantum.h"
2016-10-30 03:12:58 +06:00
2016-10-29 01:21:38 +06:00
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
# define matrix_bitpop(i) bitpop16(matrix[i])
# define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
# define matrix_bitpop(i) bitpop32(matrix[i])
# define ROW_SHIFTER ((uint32_t)1)
#endif
#ifdef MATRIX_MASKED
2016-10-30 03:12:58 +06:00
extern const matrix_row_t matrix_mask[];
2015-09-14 08:10:01 +06:00
#endif
#if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
static const pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
#endif
2016-07-04 21:45:58 +06:00
/* matrix state(1:on, 0:off) */
static matrix_row_t raw_matrix[MATRIX_ROWS]; //raw values
static matrix_row_t matrix[MATRIX_ROWS]; //debounced values
2016-10-29 03:24:20 +06:00
2016-10-29 01:21:38 +06:00
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void);
2016-10-30 03:12:58 +06:00
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
2016-10-29 01:21:38 +06:00
static void unselect_rows(void);
static void select_row(uint8_t row);
static void unselect_row(uint8_t row);
#elif (DIODE_DIRECTION == ROW2COL)
2016-10-29 01:21:38 +06:00
static void init_rows(void);
2016-10-30 03:12:58 +06:00
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
2016-10-29 01:21:38 +06:00
static void unselect_cols(void);
static void unselect_col(uint8_t col);
static void select_col(uint8_t col);
2016-05-24 09:42:21 +06:00
#endif
2015-08-21 20:46:53 +06:00
2015-10-27 02:32:37 +06:00
__attribute__ ((weak))
void matrix_init_quantum(void) {
matrix_init_kb();
}
2015-10-27 02:32:37 +06:00
__attribute__ ((weak))
void matrix_scan_quantum(void) {
matrix_scan_kb();
}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
2015-10-27 02:32:37 +06:00
2016-07-04 21:45:58 +06:00
inline
2016-05-24 09:42:21 +06:00
uint8_t matrix_rows(void) {
2015-08-21 20:46:53 +06:00
return MATRIX_ROWS;
}
2016-07-04 21:45:58 +06:00
inline
2016-05-24 09:42:21 +06:00
uint8_t matrix_cols(void) {
2015-08-21 20:46:53 +06:00
return MATRIX_COLS;
}
2016-05-24 09:42:21 +06:00
void matrix_init(void) {
2016-10-29 01:21:38 +06:00
2016-07-04 21:45:58 +06:00
// initialize row and col
2016-10-29 01:21:38 +06:00
#if (DIODE_DIRECTION == COL2ROW)
2016-07-04 21:45:58 +06:00
unselect_rows();
init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
2016-10-29 01:21:38 +06:00
unselect_cols();
init_rows();
2016-10-29 21:39:03 +06:00
#endif
2016-10-29 01:21:38 +06:00
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
Simplify split_common Code significantly (#4772) * Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
2019-01-18 00:08:14 +06:00
raw_matrix[i] = 0;
2016-10-29 01:21:38 +06:00
matrix[i] = 0;
}
Simplify split_common Code significantly (#4772) * Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
2019-01-18 00:08:14 +06:00
debounce_init(MATRIX_ROWS);
2016-10-29 01:21:38 +06:00
matrix_init_quantum();
2015-08-21 20:46:53 +06:00
}
2016-07-04 21:45:58 +06:00
uint8_t matrix_scan(void)
{
Simplify split_common Code significantly (#4772) * Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
2019-01-18 00:08:14 +06:00
bool changed = false;
2016-07-04 21:45:58 +06:00
2016-10-29 01:21:38 +06:00
#if (DIODE_DIRECTION == COL2ROW)
Simplify split_common Code significantly (#4772) * Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
2019-01-18 00:08:14 +06:00
// Set row, read cols
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
changed |= read_cols_on_row(raw_matrix, current_row);
}
#elif (DIODE_DIRECTION == ROW2COL)
Simplify split_common Code significantly (#4772) * Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
2019-01-18 00:08:14 +06:00
// Set col, read rows
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
changed |= read_rows_on_col(raw_matrix, current_col);
}
2016-07-04 21:45:58 +06:00
#endif
Simplify split_common Code significantly (#4772) * Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
2019-01-18 00:08:14 +06:00
debounce(raw_matrix, matrix, MATRIX_ROWS, changed);
matrix_scan_quantum();
return 1;
2015-08-21 20:46:53 +06:00
}
//Deprecated.
2016-07-04 21:45:58 +06:00
bool matrix_is_modified(void)
{
Simplify split_common Code significantly (#4772) * Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
2019-01-18 00:08:14 +06:00
if (debounce_active()) return false;
2016-07-04 21:45:58 +06:00
return true;
2016-05-24 09:42:21 +06:00
}
2015-09-14 08:10:01 +06:00
2016-07-04 21:45:58 +06:00
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
2016-07-04 21:45:58 +06:00
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
// Matrix mask lets you disable switches in the returned matrix data. For example, if you have a
// switch blocker installed and the switch is always pressed.
#ifdef MATRIX_MASKED
return matrix[row] & matrix_mask[row];
#else
2016-07-04 21:45:58 +06:00
return matrix[row];
#endif
2016-07-04 21:45:58 +06:00
}
void matrix_print(void)
{
2016-10-29 01:21:38 +06:00
print_matrix_header();
2016-07-04 21:45:58 +06:00
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
2016-10-29 01:21:38 +06:00
print_matrix_row(row);
2016-07-04 21:45:58 +06:00
print("\n");
2015-08-21 20:46:53 +06:00
}
}
2016-07-04 21:45:58 +06:00
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
2016-10-29 01:21:38 +06:00
count += matrix_bitpop(i);
2016-05-24 09:42:21 +06:00
}
2016-07-04 21:45:58 +06:00
return count;
2016-05-24 09:42:21 +06:00
}
2015-09-14 08:10:01 +06:00
2016-10-29 01:21:38 +06:00
#if (DIODE_DIRECTION == COL2ROW)
2016-07-04 21:45:58 +06:00
static void init_cols(void)
{
2016-10-29 01:21:38 +06:00
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
setPinInputHigh(col_pins[x]);
2016-07-04 21:45:58 +06:00
}
2015-08-21 20:46:53 +06:00
}
2016-10-30 03:12:58 +06:00
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
2016-07-04 21:45:58 +06:00
{
2016-10-30 03:12:58 +06:00
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
2016-10-29 03:24:20 +06:00
// Clear data in matrix row
current_matrix[current_row] = 0;
2015-09-14 08:10:01 +06:00
2016-10-29 03:24:20 +06:00
// Select row and wait for row selecton to stabilize
select_row(current_row);
wait_us(30);
2016-10-29 01:21:38 +06:00
2016-10-29 03:24:20 +06:00
// For each col...
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
// Select the col pin to read (active low)
uint8_t pin_state = readPin(col_pins[col_index]);
2016-10-29 03:24:20 +06:00
// Populate the matrix row with the state of the col pin
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
2016-10-29 21:39:03 +06:00
// Unselect row
unselect_row(current_row);
2016-10-30 03:12:58 +06:00
return (last_row_value != current_matrix[current_row]);
2015-08-21 20:46:53 +06:00
}
2016-10-29 01:21:38 +06:00
static void select_row(uint8_t row)
{
setPinOutput(row_pins[row]);
writePinLow(row_pins[row]);
2016-10-29 01:21:38 +06:00
}
static void unselect_row(uint8_t row)
{
setPinInputHigh(row_pins[row]);
2016-10-29 01:21:38 +06:00
}
2016-07-04 21:45:58 +06:00
static void unselect_rows(void)
{
2016-10-29 01:21:38 +06:00
for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
setPinInput(row_pins[x]);
2016-05-24 09:42:21 +06:00
}
2016-07-04 21:45:58 +06:00
}
#elif (DIODE_DIRECTION == ROW2COL)
2016-10-29 01:21:38 +06:00
static void init_rows(void)
2016-07-04 21:45:58 +06:00
{
2016-10-29 01:21:38 +06:00
for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
setPinInputHigh(row_pins[x]);
2016-10-29 01:21:38 +06:00
}
}
2016-07-04 21:45:58 +06:00
2016-10-30 03:12:58 +06:00
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
2016-10-29 01:21:38 +06:00
{
2016-10-30 03:12:58 +06:00
bool matrix_changed = false;
2016-10-29 01:21:38 +06:00
2016-10-29 03:24:20 +06:00
// Select col and wait for col selecton to stabilize
select_col(current_col);
wait_us(30);
2016-10-29 01:21:38 +06:00
2016-10-29 03:24:20 +06:00
// For each row...
2016-10-30 03:12:58 +06:00
for(uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[row_index];
2016-10-29 03:24:20 +06:00
2016-10-29 21:39:03 +06:00
// Check row pin state
if (readPin(row_pins[row_index]) == 0)
2016-10-29 21:39:03 +06:00
{
// Pin LO, set col bit
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
}
else
{
// Pin HI, clear col bit
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
}
2016-10-30 03:12:58 +06:00
// Determine if the matrix changed state
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
{
matrix_changed = true;
}
2016-10-29 03:24:20 +06:00
}
2016-10-29 21:39:03 +06:00
// Unselect col
unselect_col(current_col);
2016-10-30 03:12:58 +06:00
return matrix_changed;
2016-10-29 01:21:38 +06:00
}
static void select_col(uint8_t col)
{
setPinOutput(col_pins[col]);
writePinLow(col_pins[col]);
2016-10-29 01:21:38 +06:00
}
static void unselect_col(uint8_t col)
{
setPinInputHigh(col_pins[col]);
2016-05-24 09:42:21 +06:00
}
2016-10-29 01:21:38 +06:00
static void unselect_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
setPinInputHigh(col_pins[x]);
2016-10-29 01:21:38 +06:00
}
}
#endif