2019-04-16 09:32:57 +06:00
|
|
|
/*
|
|
|
|
Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
#include "i2c_master.h"
|
|
|
|
#include "oled_driver.h"
|
|
|
|
#include OLED_FONT_H
|
|
|
|
#include "timer.h"
|
|
|
|
#include "print.h"
|
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
|
2020-03-01 12:56:50 +06:00
|
|
|
#include "progmem.h"
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
// Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
|
2019-06-12 04:27:17 +06:00
|
|
|
// for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
|
|
|
|
|
2019-04-16 09:32:57 +06:00
|
|
|
// Fundamental Commands
|
2019-08-31 00:19:03 +06:00
|
|
|
#define CONTRAST 0x81
|
|
|
|
#define DISPLAY_ALL_ON 0xA5
|
|
|
|
#define DISPLAY_ALL_ON_RESUME 0xA4
|
|
|
|
#define NORMAL_DISPLAY 0xA6
|
|
|
|
#define DISPLAY_ON 0xAF
|
|
|
|
#define DISPLAY_OFF 0xAE
|
|
|
|
#define NOP 0xE3
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
// Scrolling Commands
|
2019-08-31 00:19:03 +06:00
|
|
|
#define ACTIVATE_SCROLL 0x2F
|
|
|
|
#define DEACTIVATE_SCROLL 0x2E
|
|
|
|
#define SCROLL_RIGHT 0x26
|
|
|
|
#define SCROLL_LEFT 0x27
|
|
|
|
#define SCROLL_RIGHT_UP 0x29
|
|
|
|
#define SCROLL_LEFT_UP 0x2A
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
// Addressing Setting Commands
|
2019-08-31 00:19:03 +06:00
|
|
|
#define MEMORY_MODE 0x20
|
|
|
|
#define COLUMN_ADDR 0x21
|
|
|
|
#define PAGE_ADDR 0x22
|
|
|
|
#define PAM_SETCOLUMN_LSB 0x00
|
|
|
|
#define PAM_SETCOLUMN_MSB 0x10
|
|
|
|
#define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
// Hardware Configuration Commands
|
2019-08-31 00:19:03 +06:00
|
|
|
#define DISPLAY_START_LINE 0x40
|
|
|
|
#define SEGMENT_REMAP 0xA0
|
|
|
|
#define SEGMENT_REMAP_INV 0xA1
|
|
|
|
#define MULTIPLEX_RATIO 0xA8
|
|
|
|
#define COM_SCAN_INC 0xC0
|
|
|
|
#define COM_SCAN_DEC 0xC8
|
|
|
|
#define DISPLAY_OFFSET 0xD3
|
|
|
|
#define COM_PINS 0xDA
|
|
|
|
#define COM_PINS_SEQ 0x02
|
|
|
|
#define COM_PINS_ALT 0x12
|
|
|
|
#define COM_PINS_SEQ_LR 0x22
|
|
|
|
#define COM_PINS_ALT_LR 0x32
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
// Timing & Driving Commands
|
2019-08-31 00:19:03 +06:00
|
|
|
#define DISPLAY_CLOCK 0xD5
|
|
|
|
#define PRE_CHARGE_PERIOD 0xD9
|
|
|
|
#define VCOM_DETECT 0xDB
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
// Charge Pump Commands
|
2019-08-31 00:19:03 +06:00
|
|
|
#define CHARGE_PUMP 0x8D
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
// Misc defines
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
#ifndef OLED_BLOCK_COUNT
|
|
|
|
# define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
|
|
|
|
#endif
|
|
|
|
#ifndef OLED_BLOCK_SIZE
|
|
|
|
# define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define OLED_ALL_BLOCKS_MASK (((((OLED_BLOCK_TYPE)1 << (OLED_BLOCK_COUNT - 1)) - 1) << 1) | 1)
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
// i2c defines
|
|
|
|
#define I2C_CMD 0x00
|
|
|
|
#define I2C_DATA 0x40
|
|
|
|
#if defined(__AVR__)
|
2020-07-26 03:50:56 +06:00
|
|
|
# define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
|
2019-08-31 00:19:03 +06:00
|
|
|
#else // defined(__AVR__)
|
2020-07-26 03:50:56 +06:00
|
|
|
# define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
|
2019-08-31 00:19:03 +06:00
|
|
|
#endif // defined(__AVR__)
|
2020-07-26 03:50:56 +06:00
|
|
|
#define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
|
|
|
|
#define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, OLED_I2C_TIMEOUT)
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
#define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
|
|
|
|
|
|
|
|
// Display buffer's is the same as the OLED memory layout
|
|
|
|
// this is so we don't end up with rounding errors with
|
|
|
|
// parts of the display unusable or don't get cleared correctly
|
|
|
|
// and also allows for drawing & inverting
|
2019-08-31 00:19:03 +06:00
|
|
|
uint8_t oled_buffer[OLED_MATRIX_SIZE];
|
|
|
|
uint8_t * oled_cursor;
|
|
|
|
OLED_BLOCK_TYPE oled_dirty = 0;
|
|
|
|
bool oled_initialized = false;
|
|
|
|
bool oled_active = false;
|
|
|
|
bool oled_scrolling = false;
|
2020-10-29 13:12:50 +06:00
|
|
|
uint8_t oled_brightness = OLED_BRIGHTNESS;
|
2019-08-31 00:19:03 +06:00
|
|
|
uint8_t oled_rotation = 0;
|
|
|
|
uint8_t oled_rotation_width = 0;
|
2020-03-15 03:37:29 +06:00
|
|
|
uint8_t oled_scroll_speed = 0; // this holds the speed after being remapped to ssd1306 internal values
|
2020-03-15 03:04:34 +06:00
|
|
|
uint8_t oled_scroll_start = 0;
|
|
|
|
uint8_t oled_scroll_end = 7;
|
2019-08-26 01:37:55 +06:00
|
|
|
#if OLED_TIMEOUT > 0
|
2019-08-31 00:19:03 +06:00
|
|
|
uint32_t oled_timeout;
|
2019-08-26 01:37:55 +06:00
|
|
|
#endif
|
|
|
|
#if OLED_SCROLL_TIMEOUT > 0
|
2019-08-31 00:19:03 +06:00
|
|
|
uint32_t oled_scroll_timeout;
|
2019-04-16 09:32:57 +06:00
|
|
|
#endif
|
|
|
|
|
|
|
|
// Internal variables to reduce math instructions
|
|
|
|
|
|
|
|
#if defined(__AVR__)
|
|
|
|
// identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
|
|
|
|
// probably should move this into i2c_master...
|
2019-08-31 00:19:03 +06:00
|
|
|
static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t *data, uint16_t length, uint16_t timeout) {
|
|
|
|
i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
for (uint16_t i = 0; i < length && status >= 0; i++) {
|
|
|
|
status = i2c_write(pgm_read_byte((const char *)data++), timeout);
|
|
|
|
if (status) break;
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
i2c_stop();
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
return status;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Flips the rendering bits for a character at the current cursor position
|
2019-08-31 00:19:03 +06:00
|
|
|
static void InvertCharacter(uint8_t *cursor) {
|
|
|
|
const uint8_t *end = cursor + OLED_FONT_WIDTH;
|
|
|
|
while (cursor < end) {
|
|
|
|
*cursor = ~(*cursor);
|
|
|
|
cursor++;
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
bool oled_init(uint8_t rotation) {
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_rotation = oled_init_user(rotation);
|
|
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
|
oled_rotation_width = OLED_DISPLAY_WIDTH;
|
|
|
|
} else {
|
|
|
|
oled_rotation_width = OLED_DISPLAY_HEIGHT;
|
|
|
|
}
|
|
|
|
i2c_init();
|
|
|
|
|
|
|
|
static const uint8_t PROGMEM display_setup1[] = {
|
|
|
|
I2C_CMD,
|
|
|
|
DISPLAY_OFF,
|
|
|
|
DISPLAY_CLOCK,
|
|
|
|
0x80,
|
|
|
|
MULTIPLEX_RATIO,
|
|
|
|
OLED_DISPLAY_HEIGHT - 1,
|
|
|
|
DISPLAY_OFFSET,
|
|
|
|
0x00,
|
|
|
|
DISPLAY_START_LINE | 0x00,
|
|
|
|
CHARGE_PUMP,
|
|
|
|
0x14,
|
2019-06-12 04:27:17 +06:00
|
|
|
#if (OLED_IC != OLED_IC_SH1106)
|
2019-08-31 00:19:03 +06:00
|
|
|
// MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
|
|
|
|
MEMORY_MODE,
|
|
|
|
0x00, // Horizontal addressing mode
|
2019-06-12 04:27:17 +06:00
|
|
|
#endif
|
2019-08-31 00:19:03 +06:00
|
|
|
};
|
|
|
|
if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("oled_init cmd set 1 failed\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
|
|
|
|
static const uint8_t PROGMEM display_normal[] = {I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC};
|
|
|
|
if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("oled_init cmd normal rotation failed\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
static const uint8_t PROGMEM display_flipped[] = {I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC};
|
|
|
|
if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("display_flipped failed\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-10-29 13:12:50 +06:00
|
|
|
static const uint8_t PROGMEM display_setup2[] = {I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, OLED_BRIGHTNESS, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x20, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON};
|
2019-08-31 00:19:03 +06:00
|
|
|
if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("display_setup2 failed\n");
|
|
|
|
return false;
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-26 01:37:55 +06:00
|
|
|
#if OLED_TIMEOUT > 0
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_timeout = timer_read32() + OLED_TIMEOUT;
|
2019-08-26 01:37:55 +06:00
|
|
|
#endif
|
|
|
|
#if OLED_SCROLL_TIMEOUT > 0
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
|
2019-08-26 01:37:55 +06:00
|
|
|
#endif
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_clear();
|
|
|
|
oled_initialized = true;
|
|
|
|
oled_active = true;
|
|
|
|
oled_scrolling = false;
|
|
|
|
return true;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
__attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) { return rotation; }
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
void oled_clear(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
memset(oled_buffer, 0, sizeof(oled_buffer));
|
|
|
|
oled_cursor = &oled_buffer[0];
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty = OLED_ALL_BLOCKS_MASK;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) {
|
|
|
|
// Calculate commands to set memory addressing bounds.
|
|
|
|
uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
|
|
|
|
uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
|
2019-06-12 04:27:17 +06:00
|
|
|
#if (OLED_IC == OLED_IC_SH1106)
|
2019-08-31 00:19:03 +06:00
|
|
|
// Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
|
|
|
|
// Column value must be split into high and low nybble and sent as two commands.
|
|
|
|
cmd_array[0] = PAM_PAGE_ADDR | start_page;
|
|
|
|
cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
|
|
|
|
cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
|
|
|
|
cmd_array[3] = NOP;
|
|
|
|
cmd_array[4] = NOP;
|
|
|
|
cmd_array[5] = NOP;
|
2019-06-12 04:27:17 +06:00
|
|
|
#else
|
2019-08-31 00:19:03 +06:00
|
|
|
// Commands for use in Horizontal Addressing mode.
|
|
|
|
cmd_array[1] = start_column;
|
|
|
|
cmd_array[4] = start_page;
|
|
|
|
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
|
|
|
|
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
|
2019-06-12 04:27:17 +06:00
|
|
|
#endif
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) {
|
|
|
|
cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
|
|
|
|
cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
|
|
|
|
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];
|
|
|
|
;
|
|
|
|
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
uint8_t crot(uint8_t a, int8_t n) {
|
|
|
|
const uint8_t mask = 0x7;
|
|
|
|
n &= mask;
|
|
|
|
return a << n | a >> (-n & mask);
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
static void rotate_90(const uint8_t *src, uint8_t *dest) {
|
|
|
|
for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
|
|
|
|
uint8_t selector = (1 << i);
|
|
|
|
for (uint8_t j = 0; j < 8; ++j) {
|
|
|
|
dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void oled_render(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
// Do we have work to do?
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty &= OLED_ALL_BLOCKS_MASK;
|
2019-08-31 00:19:03 +06:00
|
|
|
if (!oled_dirty || oled_scrolling) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find first dirty block
|
|
|
|
uint8_t update_start = 0;
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
while (!(oled_dirty & ((OLED_BLOCK_TYPE)1 << update_start))) {
|
2019-08-31 00:19:03 +06:00
|
|
|
++update_start;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set column & page position
|
|
|
|
static uint8_t display_start[] = {I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1};
|
|
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
|
calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
|
|
|
|
} else {
|
|
|
|
calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
|
|
|
|
}
|
|
|
|
|
|
|
|
// Send column & page position
|
|
|
|
if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("oled_render offset command failed\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
|
// Send render data chunk as is
|
|
|
|
if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("oled_render data failed\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Rotate the render chunks
|
|
|
|
const static uint8_t source_map[] = OLED_SOURCE_MAP;
|
|
|
|
const static uint8_t target_map[] = OLED_TARGET_MAP;
|
|
|
|
|
|
|
|
static uint8_t temp_buffer[OLED_BLOCK_SIZE];
|
|
|
|
memset(temp_buffer, 0, sizeof(temp_buffer));
|
|
|
|
for (uint8_t i = 0; i < sizeof(source_map); ++i) {
|
|
|
|
rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Send render data chunk after rotating
|
|
|
|
if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("oled_render90 data failed\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Turn on display if it is off
|
|
|
|
oled_on();
|
|
|
|
|
|
|
|
// Clear dirty flag
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty &= ~((OLED_BLOCK_TYPE)1 << update_start);
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
void oled_set_cursor(uint8_t col, uint8_t line) {
|
2019-08-31 00:19:03 +06:00
|
|
|
uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
// Out of bounds?
|
|
|
|
if (index >= OLED_MATRIX_SIZE) {
|
|
|
|
index = 0;
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_cursor = &oled_buffer[index];
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
void oled_advance_page(bool clearPageRemainder) {
|
2019-08-31 00:19:03 +06:00
|
|
|
uint16_t index = oled_cursor - &oled_buffer[0];
|
|
|
|
uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
|
|
|
|
|
|
|
|
if (clearPageRemainder) {
|
|
|
|
// Remaining Char count
|
|
|
|
remaining = remaining / OLED_FONT_WIDTH;
|
|
|
|
|
|
|
|
// Write empty character until next line
|
|
|
|
while (remaining--) oled_write_char(' ', false);
|
|
|
|
} else {
|
|
|
|
// Next page index out of bounds?
|
|
|
|
if (index + remaining >= OLED_MATRIX_SIZE) {
|
|
|
|
index = 0;
|
|
|
|
remaining = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
oled_cursor = &oled_buffer[index + remaining];
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void oled_advance_char(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
|
|
|
|
uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
// Do we have enough space on the current line for the next character
|
|
|
|
if (remainingSpace < OLED_FONT_WIDTH) {
|
|
|
|
nextIndex += remainingSpace;
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
// Did we go out of bounds
|
|
|
|
if (nextIndex >= OLED_MATRIX_SIZE) {
|
|
|
|
nextIndex = 0;
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
// Update cursor position
|
|
|
|
oled_cursor = &oled_buffer[nextIndex];
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
// Main handler that writes character data to the display buffer
|
|
|
|
void oled_write_char(const char data, bool invert) {
|
2019-08-31 00:19:03 +06:00
|
|
|
// Advance to the next line if newline
|
|
|
|
if (data == '\n') {
|
|
|
|
// Old source wrote ' ' until end of line...
|
|
|
|
oled_advance_page(true);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (data == '\r') {
|
|
|
|
oled_advance_page(false);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// copy the current render buffer to check for dirty after
|
|
|
|
static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
|
|
|
|
memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
|
|
|
|
|
2020-02-12 03:38:20 +06:00
|
|
|
_Static_assert(sizeof(font) >= ((OLED_FONT_END + 1 - OLED_FONT_START) * OLED_FONT_WIDTH), "OLED_FONT_END references outside array");
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
// set the reder buffer data
|
|
|
|
uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
|
|
|
|
if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
|
|
|
|
memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
|
|
|
|
} else {
|
|
|
|
const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
|
|
|
|
memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Invert if needed
|
|
|
|
if (invert) {
|
|
|
|
InvertCharacter(oled_cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Dirty check
|
|
|
|
if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
|
|
|
|
uint16_t index = oled_cursor - &oled_buffer[0];
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
|
2019-08-31 00:19:03 +06:00
|
|
|
// Edgecase check if the written data spans the 2 chunks
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << ((index + OLED_FONT_WIDTH - 1) / OLED_BLOCK_SIZE));
|
2019-08-31 00:19:03 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
// Finally move to the next char
|
|
|
|
oled_advance_char();
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
void oled_write(const char *data, bool invert) {
|
2019-08-31 00:19:03 +06:00
|
|
|
const char *end = data + strlen(data);
|
|
|
|
while (data < end) {
|
|
|
|
oled_write_char(*data, invert);
|
|
|
|
data++;
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
void oled_write_ln(const char *data, bool invert) {
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_write(data, invert);
|
|
|
|
oled_advance_page(true);
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
2020-03-07 06:52:39 +06:00
|
|
|
void oled_pan(bool left) {
|
|
|
|
uint16_t i = 0;
|
2020-03-07 07:24:47 +06:00
|
|
|
for (uint16_t y = 0; y < OLED_DISPLAY_HEIGHT / 8; y++) {
|
|
|
|
if (left) {
|
2020-03-07 06:52:39 +06:00
|
|
|
for (uint16_t x = 0; x < OLED_DISPLAY_WIDTH - 1; x++) {
|
2020-03-07 07:24:47 +06:00
|
|
|
i = y * OLED_DISPLAY_WIDTH + x;
|
|
|
|
oled_buffer[i] = oled_buffer[i + 1];
|
2020-03-07 06:52:39 +06:00
|
|
|
}
|
|
|
|
} else {
|
2020-03-07 07:24:47 +06:00
|
|
|
for (uint16_t x = OLED_DISPLAY_WIDTH - 1; x > 0; x--) {
|
|
|
|
i = y * OLED_DISPLAY_WIDTH + x;
|
|
|
|
oled_buffer[i] = oled_buffer[i - 1];
|
2020-03-07 06:52:39 +06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty = OLED_ALL_BLOCKS_MASK;
|
2020-03-07 06:52:39 +06:00
|
|
|
}
|
|
|
|
|
2020-08-24 20:40:45 +06:00
|
|
|
oled_buffer_reader_t oled_read_raw(uint16_t start_index) {
|
|
|
|
if (start_index > OLED_MATRIX_SIZE) start_index = OLED_MATRIX_SIZE;
|
|
|
|
oled_buffer_reader_t ret_reader;
|
2020-08-30 04:57:48 +06:00
|
|
|
ret_reader.current_element = &oled_buffer[start_index];
|
2020-08-24 20:40:45 +06:00
|
|
|
ret_reader.remaining_element_count = OLED_MATRIX_SIZE - start_index;
|
|
|
|
return ret_reader;
|
|
|
|
}
|
|
|
|
|
2020-03-07 06:52:39 +06:00
|
|
|
void oled_write_raw_byte(const char data, uint16_t index) {
|
|
|
|
if (index > OLED_MATRIX_SIZE) index = OLED_MATRIX_SIZE;
|
|
|
|
if (oled_buffer[index] == data) return;
|
|
|
|
oled_buffer[index] = data;
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
|
2020-03-07 06:52:39 +06:00
|
|
|
}
|
|
|
|
|
2019-11-04 04:34:47 +06:00
|
|
|
void oled_write_raw(const char *data, uint16_t size) {
|
|
|
|
if (size > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE;
|
|
|
|
for (uint16_t i = 0; i < size; i++) {
|
|
|
|
if (oled_buffer[i] == data[i]) continue;
|
|
|
|
oled_buffer[i] = data[i];
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
|
2019-11-04 04:34:47 +06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-07-16 11:48:04 +06:00
|
|
|
void oled_write_pixel(uint8_t x, uint8_t y, bool on) {
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
if (x >= oled_rotation_width) {
|
2020-07-16 11:48:04 +06:00
|
|
|
return;
|
|
|
|
}
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
uint16_t index = x + (y / 8) * oled_rotation_width;
|
|
|
|
if (index >= OLED_MATRIX_SIZE) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint8_t data = oled_buffer[index];
|
2020-07-16 11:48:04 +06:00
|
|
|
if (on) {
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
data |= (1 << (y % 8));
|
2020-07-16 11:48:04 +06:00
|
|
|
} else {
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
data &= ~(1 << (y % 8));
|
|
|
|
}
|
|
|
|
if (oled_buffer[index] != data) {
|
|
|
|
oled_buffer[index] = data;
|
|
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
|
2020-07-16 11:48:04 +06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-04-16 09:32:57 +06:00
|
|
|
#if defined(__AVR__)
|
|
|
|
void oled_write_P(const char *data, bool invert) {
|
2019-08-31 00:19:03 +06:00
|
|
|
uint8_t c = pgm_read_byte(data);
|
|
|
|
while (c != 0) {
|
|
|
|
oled_write_char(c, invert);
|
|
|
|
c = pgm_read_byte(++data);
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
void oled_write_ln_P(const char *data, bool invert) {
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_write_P(data, invert);
|
|
|
|
oled_advance_page(true);
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
2019-11-04 04:34:47 +06:00
|
|
|
|
|
|
|
void oled_write_raw_P(const char *data, uint16_t size) {
|
|
|
|
if (size > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE;
|
|
|
|
for (uint16_t i = 0; i < size; i++) {
|
2020-05-10 09:14:07 +06:00
|
|
|
uint8_t c = pgm_read_byte(data++);
|
2019-11-04 04:34:47 +06:00
|
|
|
if (oled_buffer[i] == c) continue;
|
|
|
|
oled_buffer[i] = c;
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
|
2019-11-04 04:34:47 +06:00
|
|
|
}
|
|
|
|
}
|
2019-08-31 00:19:03 +06:00
|
|
|
#endif // defined(__AVR__)
|
2019-04-16 09:32:57 +06:00
|
|
|
|
|
|
|
bool oled_on(void) {
|
2019-08-26 01:37:55 +06:00
|
|
|
#if OLED_TIMEOUT > 0
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_timeout = timer_read32() + OLED_TIMEOUT;
|
2019-04-16 09:32:57 +06:00
|
|
|
#endif
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
static const uint8_t PROGMEM display_on[] = {I2C_CMD, DISPLAY_ON};
|
|
|
|
if (!oled_active) {
|
|
|
|
if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("oled_on cmd failed\n");
|
|
|
|
return oled_active;
|
|
|
|
}
|
|
|
|
oled_active = true;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
2019-08-31 00:19:03 +06:00
|
|
|
return oled_active;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
bool oled_off(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
static const uint8_t PROGMEM display_off[] = {I2C_CMD, DISPLAY_OFF};
|
|
|
|
if (oled_active) {
|
|
|
|
if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("oled_off cmd failed\n");
|
|
|
|
return oled_active;
|
|
|
|
}
|
|
|
|
oled_active = false;
|
|
|
|
}
|
|
|
|
return !oled_active;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
2020-09-22 07:39:50 +06:00
|
|
|
bool is_oled_on(void) { return oled_active; }
|
|
|
|
|
2020-10-29 13:12:50 +06:00
|
|
|
uint8_t oled_set_brightness(uint8_t level) {
|
|
|
|
uint8_t set_contrast[] = {I2C_CMD, CONTRAST, level};
|
|
|
|
if (oled_brightness != level) {
|
|
|
|
if (I2C_TRANSMIT(set_contrast) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("set_brightness cmd failed\n");
|
|
|
|
return oled_brightness;
|
|
|
|
}
|
|
|
|
oled_brightness = level;
|
|
|
|
}
|
|
|
|
return oled_brightness;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t oled_get_brightness(void) { return oled_brightness; }
|
|
|
|
|
2020-03-15 03:04:34 +06:00
|
|
|
// Set the specific 8 lines rows of the screen to scroll.
|
|
|
|
// 0 is the default for start, and 7 for end, which is the entire
|
|
|
|
// height of the screen. For 128x32 screens, rows 4-7 are not used.
|
|
|
|
void oled_scroll_set_area(uint8_t start_line, uint8_t end_line) {
|
|
|
|
oled_scroll_start = start_line;
|
2020-03-15 03:37:29 +06:00
|
|
|
oled_scroll_end = end_line;
|
2020-03-15 03:04:34 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
void oled_scroll_set_speed(uint8_t speed) {
|
|
|
|
// Sets the speed for scrolling... does not take effect
|
|
|
|
// until scrolling is either started or restarted
|
|
|
|
// the ssd1306 supports 8 speeds
|
|
|
|
// FrameRate2 speed = 7
|
|
|
|
// FrameRate3 speed = 4
|
|
|
|
// FrameRate4 speed = 5
|
|
|
|
// FrameRate5 speed = 0
|
|
|
|
// FrameRate25 speed = 6
|
|
|
|
// FrameRate64 speed = 1
|
|
|
|
// FrameRate128 speed = 2
|
|
|
|
// FrameRate256 speed = 3
|
|
|
|
// for ease of use these are remaped here to be in order
|
|
|
|
static const uint8_t scroll_remap[8] = {7, 4, 5, 0, 6, 1, 2, 3};
|
2020-03-15 03:37:29 +06:00
|
|
|
oled_scroll_speed = scroll_remap[speed];
|
2020-03-15 03:04:34 +06:00
|
|
|
}
|
|
|
|
|
2019-04-16 09:32:57 +06:00
|
|
|
bool oled_scroll_right(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
// Dont enable scrolling if we need to update the display
|
|
|
|
// This prevents scrolling of bad data from starting the scroll too early after init
|
|
|
|
if (!oled_dirty && !oled_scrolling) {
|
2020-03-15 03:04:34 +06:00
|
|
|
uint8_t display_scroll_right[] = {I2C_CMD, SCROLL_RIGHT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
|
|
|
|
if (I2C_TRANSMIT(display_scroll_right) != I2C_STATUS_SUCCESS) {
|
2019-08-31 00:19:03 +06:00
|
|
|
print("oled_scroll_right cmd failed\n");
|
|
|
|
return oled_scrolling;
|
|
|
|
}
|
|
|
|
oled_scrolling = true;
|
|
|
|
}
|
|
|
|
return oled_scrolling;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
bool oled_scroll_left(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
// Dont enable scrolling if we need to update the display
|
|
|
|
// This prevents scrolling of bad data from starting the scroll too early after init
|
|
|
|
if (!oled_dirty && !oled_scrolling) {
|
2020-03-15 03:04:34 +06:00
|
|
|
uint8_t display_scroll_left[] = {I2C_CMD, SCROLL_LEFT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
|
|
|
|
if (I2C_TRANSMIT(display_scroll_left) != I2C_STATUS_SUCCESS) {
|
2019-08-31 00:19:03 +06:00
|
|
|
print("oled_scroll_left cmd failed\n");
|
|
|
|
return oled_scrolling;
|
|
|
|
}
|
|
|
|
oled_scrolling = true;
|
|
|
|
}
|
|
|
|
return oled_scrolling;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
bool oled_scroll_off(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
if (oled_scrolling) {
|
|
|
|
static const uint8_t PROGMEM display_scroll_off[] = {I2C_CMD, DEACTIVATE_SCROLL};
|
|
|
|
if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
|
|
|
|
print("oled_scroll_off cmd failed\n");
|
|
|
|
return oled_scrolling;
|
|
|
|
}
|
|
|
|
oled_scrolling = false;
|
OLED driver fixes (#10377)
* Fix dirtying in oled_write_pixel()
Set the dirty bit for the block only if oled_write_pixel() actually
changed the buffer state. Without this check oled_write_pixel() could
not be used inside the oled_task_user() code using the “redraw always”
style, because the blocks touched by oled_write_pixel() would always
appear dirty, and oled_render() would not proceed beyond the first such
dirty block.
* Fix oled_write_pixel() with 90/270 degree rotation
Use oled_rotation_width instead of OLED_DISPLAY_WIDTH, so that a rotated
display would be handled correctly.
* Fix compilation with custom OLED_BLOCK_COUNT and OLED_BLOCK_SIZE
Some OLED sizes (e.g., 64×48) may require a nonstandard value of
OLED_BLOCK_COUNT. The documentation says that this value may be
redefined in config.h, but actually trying to redefine it caused a
compile error, because the macro was redefined in oled_driver.c.
Make the OLED_BLOCK_COUNT definition in oled_driver.c respect any
user override, and do the same for OLED_BLOCK_SIZE just in case.
* Fix handling of out-of-range bits in oled_dirty
If a custom OLED_BLOCK_COUNT value is specified, some bits in oled_dirty
may not correspond to existing blocks; however, if those bits are set
somewhere (e.g., by code with sets oled_dirty to ~0 or even -1),
oled_render() would try to handle them and could access memory beyond
oled_buffer and perform hardware operations with out of range values.
Prevent this by masking off unused bits in oled_render(), and also avoid
setting those bits in other functions.
* Fix potentially wrong dirtying in oled_write_char()
oled_write_char() tried to mark the position just beyond the written
character as dirty; use (OLED_FONT_WIDTH - 1) to dirty the last position
still belonging to the character instead.
* Fix `#define OLED_BLOCK_TYPE uint32_t` on AVR
Using uint32_t as OLED_BLOCK_TYPE did not work properly on AVR, because
some bit shifts were performed using 16-bit int. Add explicit casts to
OLED_BLOCK_TYPE to those shifts.
2020-10-04 00:44:19 +06:00
|
|
|
oled_dirty = OLED_ALL_BLOCKS_MASK;
|
2019-08-31 00:19:03 +06:00
|
|
|
}
|
|
|
|
return !oled_scrolling;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t oled_max_chars(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
|
return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
|
|
|
|
}
|
|
|
|
return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t oled_max_lines(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
|
return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
|
|
|
|
}
|
|
|
|
return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
|
|
|
void oled_task(void) {
|
2019-08-31 00:19:03 +06:00
|
|
|
if (!oled_initialized) {
|
|
|
|
return;
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_set_cursor(0, 0);
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
oled_task_user();
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-26 01:37:55 +06:00
|
|
|
#if OLED_SCROLL_TIMEOUT > 0
|
2019-08-31 00:19:03 +06:00
|
|
|
if (oled_dirty && oled_scrolling) {
|
|
|
|
oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
|
|
|
|
oled_scroll_off();
|
|
|
|
}
|
2019-08-26 01:37:55 +06:00
|
|
|
#endif
|
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
// Smart render system, no need to check for dirty
|
|
|
|
oled_render();
|
2019-04-16 09:32:57 +06:00
|
|
|
|
2019-08-31 00:19:03 +06:00
|
|
|
// Display timeout check
|
2019-08-26 01:37:55 +06:00
|
|
|
#if OLED_TIMEOUT > 0
|
2019-08-31 00:19:03 +06:00
|
|
|
if (oled_active && timer_expired32(timer_read32(), oled_timeout)) {
|
|
|
|
oled_off();
|
|
|
|
}
|
2019-04-16 09:32:57 +06:00
|
|
|
#endif
|
2019-08-26 01:37:55 +06:00
|
|
|
|
|
|
|
#if OLED_SCROLL_TIMEOUT > 0
|
2019-08-31 00:19:03 +06:00
|
|
|
if (!oled_scrolling && timer_expired32(timer_read32(), oled_scroll_timeout)) {
|
|
|
|
# ifdef OLED_SCROLL_TIMEOUT_RIGHT
|
|
|
|
oled_scroll_right();
|
|
|
|
# else
|
|
|
|
oled_scroll_left();
|
|
|
|
# endif
|
|
|
|
}
|
2019-08-26 01:37:55 +06:00
|
|
|
#endif
|
2019-04-16 09:32:57 +06:00
|
|
|
}
|
|
|
|
|
2020-02-12 03:38:20 +06:00
|
|
|
__attribute__((weak)) void oled_task_user(void) {}
|