keychron_qmk_firmware/quantum/process_keycode/process_steno.c

247 lines
9.3 KiB
C
Raw Normal View History

/* Copyright 2017, 2022 Joseph Wasson, Vladislav Kucheriavykh
2017-07-28 00:56:50 +06:00
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "process_steno.h"
#include "quantum_keycodes.h"
#include "eeconfig.h"
#include <string.h>
#ifdef VIRTSER_ENABLE
# include "virtser.h"
#endif
#ifdef STENO_ENABLE_ALL
# include "eeprom.h"
#endif
// All steno keys that have been pressed to form this chord,
// stored in MAX_STROKE_SIZE groups of 8-bit arrays.
static uint8_t chord[MAX_STROKE_SIZE] = {0};
// The number of physical keys actually being held down.
// This is not always equal to the number of 1 bits in `chord` because it is possible to
// simultaneously press down four keys, then release three of those four keys and then press yet
// another key while the fourth finger is still holding down its key.
// At the end of this scenario given as an example, `chord` would have five bits set to 1 but
// `n_pressed_keys` would be set to 2 because there are only two keys currently being pressed down.
static int8_t n_pressed_keys = 0;
#ifdef STENO_ENABLE_ALL
static steno_mode_t mode;
#elif defined(STENO_ENABLE_GEMINI)
static const steno_mode_t mode = STENO_MODE_GEMINI;
#elif defined(STENO_ENABLE_BOLT)
static const steno_mode_t mode = STENO_MODE_BOLT;
#endif
static inline void steno_clear_chord(void) {
2019-08-31 00:19:03 +06:00
memset(chord, 0, sizeof(chord));
}
#ifdef STENO_ENABLE_GEMINI
# ifdef VIRTSER_ENABLE
void send_steno_chord_gemini(void) {
// Set MSB to 1 to indicate the start of packet
chord[0] |= 0x80;
for (uint8_t i = 0; i < GEMINI_STROKE_SIZE; ++i) {
virtser_send(chord[i]);
}
}
# else
# pragma message "VIRTSER_ENABLE = yes is required for Gemini PR to work properly out of the box!"
# endif // VIRTSER_ENABLE
/**
* @precondition: `key` is pressed
*/
bool add_gemini_key_to_chord(uint8_t key) {
// Although each group of the packet is 8 bits long, the MSB is reserved
// to indicate whether that byte is the first byte of the packet (MSB=1)
// or one of the remaining five bytes of the packet (MSB=0).
// As a consequence, only 7 out of the 8 bits are left to be used as a bit array
// for the steno keys of that group.
const int group_idx = key / 7;
const int intra_group_idx = key - group_idx * 7;
// The 0th steno key of the group has bit=0b01000000, the 1st has bit=0b00100000, etc.
const uint8_t bit = 1 << (6 - intra_group_idx);
chord[group_idx] |= bit;
return false;
}
#endif // STENO_ENABLE_GEMINI
#ifdef STENO_ENABLE_BOLT
# define TXB_GRP0 0b00000000
# define TXB_GRP1 0b01000000
# define TXB_GRP2 0b10000000
# define TXB_GRP3 0b11000000
# define TXB_GRPMASK 0b11000000
# define TXB_GET_GROUP(code) ((code & TXB_GRPMASK) >> 6)
static const uint8_t boltmap[64] PROGMEM = {TXB_NUL, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_S_L, TXB_S_L, TXB_T_L, TXB_K_L, TXB_P_L, TXB_W_L, TXB_H_L, TXB_R_L, TXB_A_L, TXB_O_L, TXB_STR, TXB_STR, TXB_NUL, TXB_NUL, TXB_NUL, TXB_STR, TXB_STR, TXB_E_R, TXB_U_R, TXB_F_R, TXB_R_R, TXB_P_R, TXB_B_R, TXB_L_R, TXB_G_R, TXB_T_R, TXB_S_R, TXB_D_R, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_Z_R};
# ifdef VIRTSER_ENABLE
static void send_steno_chord_bolt(void) {
for (uint8_t i = 0; i < BOLT_STROKE_SIZE; ++i) {
// TX Bolt uses variable length packets where each byte corresponds to a bit array of certain keys.
// If a user chorded the keys of the first group with keys of the last group, for example, there
// would be bytes of 0x00 in `chord` for the middle groups which we mustn't send.
if (chord[i]) {
2019-08-31 00:19:03 +06:00
virtser_send(chord[i]);
}
}
// Sending a null packet is not always necessary, but it is simpler and more reliable
// to unconditionally send it every time instead of keeping track of more states and
// creating more branches in the execution of the program.
virtser_send(0);
}
# else
# pragma message "VIRTSER_ENABLE = yes is required for TX Bolt to work properly out of the box!"
# endif // VIRTSER_ENABLE
/**
* @precondition: `key` is pressed
*/
static bool add_bolt_key_to_chord(uint8_t key) {
uint8_t boltcode = pgm_read_byte(boltmap + key);
chord[TXB_GET_GROUP(boltcode)] |= boltcode;
return false;
}
#endif // STENO_ENABLE_BOLT
#ifdef STENO_COMBINEDMAP
/* Used to look up when pressing the middle row key to combine two consonant or vowel keys */
static const uint16_t combinedmap_first[] PROGMEM = {STN_S1, STN_TL, STN_PL, STN_HL, STN_FR, STN_PR, STN_LR, STN_TR, STN_DR, STN_A, STN_E};
static const uint16_t combinedmap_second[] PROGMEM = {STN_S2, STN_KL, STN_WL, STN_RL, STN_RR, STN_BR, STN_GR, STN_SR, STN_ZR, STN_O, STN_U};
#endif
#ifdef STENO_ENABLE_ALL
void steno_init(void) {
2019-08-31 00:19:03 +06:00
mode = eeprom_read_byte(EECONFIG_STENOMODE);
}
void steno_set_mode(steno_mode_t new_mode) {
steno_clear_chord();
2019-08-31 00:19:03 +06:00
mode = new_mode;
eeprom_update_byte(EECONFIG_STENOMODE, mode);
}
#endif // STENO_ENABLE_ALL
/* override to intercept chords right before they get sent.
* return zero to suppress normal sending behavior.
*/
__attribute__((weak)) bool send_steno_chord_user(steno_mode_t mode, uint8_t chord[MAX_STROKE_SIZE]) {
return true;
}
__attribute__((weak)) bool post_process_steno_user(uint16_t keycode, keyrecord_t *record, steno_mode_t mode, uint8_t chord[MAX_STROKE_SIZE], int8_t n_pressed_keys) {
return true;
}
__attribute__((weak)) bool process_steno_user(uint16_t keycode, keyrecord_t *record) {
return true;
}
bool process_steno(uint16_t keycode, keyrecord_t *record) {
if (keycode < QK_STENO || keycode > QK_STENO_MAX) {
return true; // Not a steno key, pass it further along the chain
/*
* Clearing or sending the chord state is not necessary as we intentionally ignore whatever
* normal keyboard keys the user may have tapped while chording steno keys.
*/
}
if (IS_NOEVENT(record->event)) {
return true;
2019-08-31 00:19:03 +06:00
}
if (!process_steno_user(keycode, record)) {
return false; // User fully processed the steno key themselves
2019-08-31 00:19:03 +06:00
}
switch (keycode) {
#ifdef STENO_ENABLE_ALL
2019-08-31 00:19:03 +06:00
case QK_STENO_BOLT:
if (record->event.pressed) {
2019-08-31 00:19:03 +06:00
steno_set_mode(STENO_MODE_BOLT);
}
return false;
case QK_STENO_GEMINI:
if (record->event.pressed) {
2019-08-31 00:19:03 +06:00
steno_set_mode(STENO_MODE_GEMINI);
}
return false;
#endif // STENO_ENABLE_ALL
2019-08-31 00:19:03 +06:00
#ifdef STENO_COMBINEDMAP
2021-11-02 01:18:33 +06:00
case QK_STENO_COMB ... QK_STENO_COMB_MAX: {
bool first_result = process_steno(combinedmap_first[keycode - QK_STENO_COMB], record);
bool second_result = process_steno(combinedmap_second[keycode - QK_STENO_COMB], record);
return first_result && second_result;
}
#endif // STENO_COMBINEDMAP
2019-08-31 00:19:03 +06:00
case STN__MIN ... STN__MAX:
if (record->event.pressed) {
n_pressed_keys++;
switch (mode) {
#ifdef STENO_ENABLE_BOLT
case STENO_MODE_BOLT:
add_bolt_key_to_chord(keycode - QK_STENO);
break;
#endif // STENO_ENABLE_BOLT
#ifdef STENO_ENABLE_GEMINI
case STENO_MODE_GEMINI:
add_gemini_key_to_chord(keycode - QK_STENO);
break;
#endif // STENO_ENABLE_GEMINI
default:
return false;
2019-08-31 00:19:03 +06:00
}
if (!post_process_steno_user(keycode, record, mode, chord, n_pressed_keys)) {
return false;
}
} else { // is released
n_pressed_keys--;
if (!post_process_steno_user(keycode, record, mode, chord, n_pressed_keys)) {
return false;
}
if (n_pressed_keys > 0) {
// User hasn't released all keys yet,
// so the chord cannot be sent
return false;
}
n_pressed_keys = 0;
if (!send_steno_chord_user(mode, chord)) {
steno_clear_chord();
return false;
}
switch (mode) {
#if defined(STENO_ENABLE_BOLT) && defined(VIRTSER_ENABLE)
case STENO_MODE_BOLT:
send_steno_chord_bolt();
break;
#endif // STENO_ENABLE_BOLT && VIRTSER_ENABLE
#if defined(STENO_ENABLE_GEMINI) && defined(VIRTSER_ENABLE)
case STENO_MODE_GEMINI:
send_steno_chord_gemini();
break;
#endif // STENO_ENABLE_GEMINI && VIRTSER_ENABLE
default:
break;
}
steno_clear_chord();
2019-08-31 00:19:03 +06:00
}
break;
2019-08-31 00:19:03 +06:00
}
return false;
}