The Combo feature is a chording type solution for adding custom actions. It lets you hit multiple keys at once and produce a different effect. For instance, hitting `A` and `B` within the combo term would hit `ESC` instead, or have it perform even more complex tasks.
Then, in your `keymap.c` file, you'll need to define a sequence of keys, terminated with `COMBO_END`, and a structure to list the combination of keys, and its resulting action.
Advanced keycodes, such as [Mod-Tap](../mod_tap) and [Tap Dance](tap_dance) are also supported together with combos. If you use these advanced keycodes in your keymap, you will need to place the full keycode in the combo definition, e.g.:
It is possible to overlap combos. Before, with the example below both combos would activate when all three keys were pressed. Now only the three key combo will activate.
This will send "john.doe@example.com" if you chord E and M together, and clear the current line with Backspace and Left-Shift. You could change this to do stuff like play sounds or change settings.
It is worth noting that `COMBO_ACTION`s are not needed anymore. As of [PR#8591](https://github.com/qmk/qmk_firmware/pull/8591/), it is possible to run your own custom keycodes from combos. Just define the custom keycode, program its functionality in `process_record_user`, and define a combo with `COMBO(<key_array>, <your_custom_keycode>)`. See the first example in [Macros](../feature_macros).
You can enable, disable and toggle the Combo feature on the fly. This is useful if you need to disable them temporarily, such as for a game. The following keycodes are available for use in your `keymap.c`
By default, the timeout for the Combos to be recognized is set to 50ms. This can be changed if accidental combo misfires are happening or if you're having difficulties pressing keys at the same time. For instance, `#define COMBO_TERM 40` would set the timeout period for combos to 40ms.
If you're using long combos, or you have a lot of overlapping combos, you may run into issues with this, as the buffers may not be large enough to accommodate what you're doing. In this case, you can configure the sizes of the buffers used. Be aware, larger combo sizes and larger buffers will increase memory usage!
To configure the amount of keys a combo can be composed of, change the following:
| Keys | Define to be set |
|------|-----------------------------------|
| 6 | `#define EXTRA_SHORT_COMBOS` |
| 8 | QMK Default |
| 16 | `#define EXTRA_LONG_COMBOS` |
| 32 | `#define EXTRA_EXTRA_LONG_COMBOS` |
Defining `EXTRA_SHORT_COMBOS` combines a combo's internal state into just one byte. This can, in some cases, save some memory. If it doesn't, no point using it. If you do, you also have to make sure you don't define combos with more than 6 keys.
Processing combos has two buffers, one for the key presses, another for the combos being activated. Use the following options to configure the sizes of these buffers:
If a combo resolves to a Modifier, the window for processing the combo can be extended independently from normal combos. By default, this is disabled but can be enabled with `#define COMBO_MUST_HOLD_MODS`, and the time window can be configured with `#define COMBO_HOLD_TERM 150` (default: `TAPPING_TERM`). With `COMBO_MUST_HOLD_MODS`, you cannot tap the combo any more which makes the combo less prone to misfires.
For each combo, it is possible to configure the time window it has to pressed in, if it needs to be held down, if it needs to be tapped, or if its keys need to be pressed in order.
For example, tap-only combos are useful if any (or all) of the underlying keys are mod-tap or layer-tap keys. When you tap the combo, you get the combo result. When you press the combo and hold it down, the combo doesn't activate. Instead the keys are processed separately as if the combo wasn't even there.
In order to use these features, the following configuration options and functions need to be defined. Coming up with useful timings and configuration is left as an exercise for the reader.
| `COMBO_MUST_HOLD_PER_COMBO` | bool get_combo_must_hold(uint16_t index, combo_t \*combo) | Controls if a given combo should fire immediately on tap or if it needs to be held. (default: `false`) |
| `COMBO_MUST_TAP_PER_COMBO` | bool get_combo_must_tap(uint16_t index, combo_t \*combo) | Controls if a given combo should fire only if tapped within `COMBO_HOLD_TERM`. (default: `false`) |
| `COMBO_MUST_PRESS_IN_ORDER_PER_COMBO` | bool get_combo_must_press_in_order(uint16_t index, combo_t \*combo) | Controls if a given combo should fire only if its keys are pressed in order. (default: `true`) |
By defining `COMBO_SHOULD_TRIGGER` and its companying function `bool combo_should_trigger(uint16_t combo_index, combo_t *combo, uint16_t keycode, keyrecord_t *record)` you can block or allow combos to activate on the conditions of your choice.
For example, you could disallow some combos on the base layer and allow them on another. Or disable combos on the home row when a timer is running.
By defining `COMBO_PROCESS_KEY_RELEASE` and implementing the function `bool process_combo_key_release(uint16_t combo_index, combo_t *combo, uint8_t key_index, uint16_t keycode)`, you can run your custom code on each key release after a combo was activated. For example you could change the RGB colors, activate haptics, or alter the modifiers.
You can also release a combo early by returning `true` from the function.
Here's an example where a combo resolves to two modifiers, and on key releases the modifiers are unregistered one by one, depending on which key was released.
By defining `COMBO_PROCESS_KEY_REPRESS` and implementing `bool process_combo_key_repress(uint16_t combo_index, combo_t *combo, uint8_t key_index, uint16_t keycode)` you can run your custom code when you repress just released key of a combo. By combining it with custom `process_combo_event` we can for example make special handling for Alt+Tab to switch windows, which, on combo F+G activation, registers Alt and presses Tab - then we can switch windows forward by releasing G and pressing it again, or backwards with F key. Here's the full example:
If you, for example, use multiple base layers for different key layouts, one for QWERTY, and another one for Colemak, you might want your combos to work from the same key positions on all layers. Defining the same combos again for another layout is redundant and takes more memory. The solution is to just check the keycodes from one layer.
Having 3 places to update when adding new combos or altering old ones does become cumbersome when you have a lot of combos. We can alleviate this with some magic! ... If you consider C macros magic.
First, you need to add `VPATH += keyboards/gboards` to your `rules.mk`. Next, include the file `g/keymap_combo.h` in your `keymap.c`.
This functionality uses the same `process_combo_event` function as `COMBO_ACTION` macros do, so you cannot use the function yourself in your keymap. Instead, you have to define the `case`s of the `switch` statement by themselves within `inject.h`, which `g/keymap_combo.h` will then include into the function.