keychron_qmk_firmware/keyboards/cipulot/common/via_ec.c

364 lines
14 KiB
C
Raw Normal View History

/* Copyright 2023 Cipulot
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "eeprom_tools.h"
#include "ec_switch_matrix.h"
#include "action.h"
#include "print.h"
#include "via.h"
#ifdef VIA_ENABLE
void ec_rescale_values(uint8_t item);
void ec_save_threshold_data(uint8_t option);
void ec_save_bottoming_reading(void);
void ec_show_calibration_data(void);
void ec_clear_bottoming_calibration_data(void);
// Declaring enums for VIA config menu
enum via_enums {
// clang-format off
id_actuation_mode = 1,
id_mode_0_actuation_threshold = 2,
id_mode_0_release_threshold = 3,
id_save_threshold_data = 4,
id_mode_1_initial_deadzone_offset = 5,
id_mode_1_actuation_offset = 6,
id_mode_1_release_offset = 7,
id_bottoming_calibration = 8,
id_noise_floor_calibration = 9,
id_show_calibration_data = 10,
id_clear_bottoming_calibration_data = 11
// clang-format on
};
// Handle the data received by the keyboard from the VIA menus
void via_config_set_value(uint8_t *data) {
// data = [ value_id, value_data ]
uint8_t *value_id = &(data[0]);
uint8_t *value_data = &(data[1]);
switch (*value_id) {
case id_actuation_mode: {
eeprom_ec_config.actuation_mode = value_data[0];
ec_config.actuation_mode = eeprom_ec_config.actuation_mode;
if (ec_config.actuation_mode == 0) {
uprintf("#########################\n");
uprintf("# Actuation Mode: APC #\n");
uprintf("#########################\n");
} else if (ec_config.actuation_mode == 1) {
uprintf("#################################\n");
uprintf("# Actuation Mode: Rapid Trigger #\n");
uprintf("#################################\n");
}
EEPROM_KB_PARTIAL_UPDATE(eeprom_ec_config, actuation_mode);
break;
}
case id_mode_0_actuation_threshold: {
ec_config.mode_0_actuation_threshold = value_data[1] | (value_data[0] << 8);
uprintf("APC Mode Actuation Threshold: %d\n", ec_config.mode_0_actuation_threshold);
break;
}
case id_mode_0_release_threshold: {
ec_config.mode_0_release_threshold = value_data[1] | (value_data[0] << 8);
uprintf("APC Mode Release Threshold: %d\n", ec_config.mode_0_release_threshold);
break;
}
case id_mode_1_initial_deadzone_offset: {
ec_config.mode_1_initial_deadzone_offset = value_data[1] | (value_data[0] << 8);
uprintf("Rapid Trigger Mode Initial Deadzone Offset: %d\n", ec_config.mode_1_initial_deadzone_offset);
break;
}
case id_mode_1_actuation_offset: {
ec_config.mode_1_actuation_offset = value_data[0];
uprintf("Rapid Trigger Mode Actuation Offset: %d\n", ec_config.mode_1_actuation_offset);
break;
}
case id_mode_1_release_offset: {
ec_config.mode_1_release_offset = value_data[0];
uprintf("Rapid Trigger Mode Release Offset: %d\n", ec_config.mode_1_release_offset);
break;
}
case id_bottoming_calibration: {
if (value_data[0] == 1) {
ec_config.bottoming_calibration = true;
uprintf("##############################\n");
uprintf("# Bottoming calibration mode #\n");
uprintf("##############################\n");
} else {
ec_config.bottoming_calibration = false;
ec_save_bottoming_reading();
uprintf("## Bottoming calibration done ##\n");
ec_show_calibration_data();
}
break;
}
case id_save_threshold_data: {
ec_save_threshold_data(value_data[0]);
break;
}
case id_noise_floor_calibration: {
if (value_data[0] == 0) {
ec_noise_floor();
ec_rescale_values(0);
ec_rescale_values(1);
ec_rescale_values(2);
uprintf("#############################\n");
uprintf("# Noise floor data acquired #\n");
uprintf("#############################\n");
break;
}
}
case id_show_calibration_data: {
if (value_data[0] == 0) {
ec_show_calibration_data();
break;
}
}
case id_clear_bottoming_calibration_data: {
if (value_data[0] == 0) {
ec_clear_bottoming_calibration_data();
}
}
default: {
// Unhandled value.
break;
}
}
}
// Handle the data sent by the keyboard to the VIA menus
void via_config_get_value(uint8_t *data) {
// data = [ value_id, value_data ]
uint8_t *value_id = &(data[0]);
uint8_t *value_data = &(data[1]);
switch (*value_id) {
case id_actuation_mode: {
value_data[0] = eeprom_ec_config.actuation_mode;
break;
}
case id_mode_0_actuation_threshold: {
value_data[0] = eeprom_ec_config.mode_0_actuation_threshold >> 8;
value_data[1] = eeprom_ec_config.mode_0_actuation_threshold & 0xFF;
break;
}
case id_mode_0_release_threshold: {
value_data[0] = eeprom_ec_config.mode_0_release_threshold >> 8;
value_data[1] = eeprom_ec_config.mode_0_release_threshold & 0xFF;
break;
}
case id_mode_1_initial_deadzone_offset: {
value_data[0] = eeprom_ec_config.mode_1_initial_deadzone_offset >> 8;
value_data[1] = eeprom_ec_config.mode_1_initial_deadzone_offset & 0xFF;
break;
}
case id_mode_1_actuation_offset: {
value_data[0] = eeprom_ec_config.mode_1_actuation_offset;
break;
}
case id_mode_1_release_offset: {
value_data[0] = eeprom_ec_config.mode_1_release_offset;
break;
}
default: {
// Unhandled value.
break;
}
}
}
// Handle the commands sent and received by the keyboard with VIA
void via_custom_value_command_kb(uint8_t *data, uint8_t length) {
// data = [ command_id, channel_id, value_id, value_data ]
uint8_t *command_id = &(data[0]);
uint8_t *channel_id = &(data[1]);
uint8_t *value_id_and_data = &(data[2]);
if (*channel_id == id_custom_channel) {
switch (*command_id) {
case id_custom_set_value: {
via_config_set_value(value_id_and_data);
break;
}
case id_custom_get_value: {
via_config_get_value(value_id_and_data);
break;
}
case id_custom_save: {
// Bypass the save function in favor of pinpointed saves
break;
}
default: {
// Unhandled message.
*command_id = id_unhandled;
break;
}
}
return;
}
*command_id = id_unhandled;
}
// Rescale the values received by VIA to fit the new range
void ec_rescale_values(uint8_t item) {
switch (item) {
// Rescale the APC mode actuation thresholds
case 0:
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
ec_config.rescaled_mode_0_actuation_threshold[row][col] = rescale(ec_config.mode_0_actuation_threshold, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
}
}
break;
// Rescale the APC mode release thresholds
case 1:
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
ec_config.rescaled_mode_0_release_threshold[row][col] = rescale(ec_config.mode_0_release_threshold, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
}
}
break;
// Rescale the Rapid Trigger mode initial deadzone offsets
case 2:
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
ec_config.rescaled_mode_1_initial_deadzone_offset[row][col] = rescale(ec_config.mode_1_initial_deadzone_offset, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
}
}
break;
default:
// Unhandled item.
break;
}
}
void ec_save_threshold_data(uint8_t option) {
// Save APC mode thresholds and rescale them for runtime usage
if (option == 0) {
eeprom_ec_config.mode_0_actuation_threshold = ec_config.mode_0_actuation_threshold;
eeprom_ec_config.mode_0_release_threshold = ec_config.mode_0_release_threshold;
ec_rescale_values(0);
ec_rescale_values(1);
}
// Save Rapid Trigger mode thresholds and rescale them for runtime usage
else if (option == 1) {
eeprom_ec_config.mode_1_initial_deadzone_offset = ec_config.mode_1_initial_deadzone_offset;
eeprom_ec_config.mode_1_actuation_offset = ec_config.mode_1_actuation_offset;
eeprom_ec_config.mode_1_release_offset = ec_config.mode_1_release_offset;
ec_rescale_values(2);
}
eeconfig_update_kb_datablock(&eeprom_ec_config);
uprintf("####################################\n");
uprintf("# New thresholds applied and saved #\n");
uprintf("####################################\n");
}
// Save the bottoming reading
void ec_save_bottoming_reading(void) {
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
// If the bottom reading doesn't go over the noise floor by BOTTOMING_CALIBRATION_THRESHOLD, it is likely that:
// 1. The key is not actually in the matrix
// 2. The key is on an alternative layout, therefore not being pressed
// 3. The key in in the current layout but not being pressed
if (ec_config.bottoming_reading[row][col] < (ec_config.noise_floor[row][col] + BOTTOMING_CALIBRATION_THRESHOLD)) {
eeprom_ec_config.bottoming_reading[row][col] = 1023;
} else {
eeprom_ec_config.bottoming_reading[row][col] = ec_config.bottoming_reading[row][col];
}
}
}
// Rescale the values to fit the new range for runtime usage
ec_rescale_values(0);
ec_rescale_values(1);
ec_rescale_values(2);
eeconfig_update_kb_datablock(&eeprom_ec_config);
}
// Show the calibration data
void ec_show_calibration_data(void) {
uprintf("\n###############\n");
uprintf("# Noise Floor #\n");
uprintf("###############\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS - 1; col++) {
uprintf("%4d,", ec_config.noise_floor[row][col]);
}
uprintf("%4d\n", ec_config.noise_floor[row][MATRIX_COLS - 1]);
}
uprintf("\n######################\n");
uprintf("# Bottoming Readings #\n");
uprintf("######################\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS - 1; col++) {
uprintf("%4d,", eeprom_ec_config.bottoming_reading[row][col]);
}
uprintf("%4d\n", eeprom_ec_config.bottoming_reading[row][MATRIX_COLS - 1]);
}
uprintf("\n######################################\n");
uprintf("# Rescaled APC Mode Actuation Points #\n");
uprintf("######################################\n");
uprintf("Original APC Mode Actuation Point: %4d\n", ec_config.mode_0_actuation_threshold);
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS - 1; col++) {
uprintf("%4d,", ec_config.rescaled_mode_0_actuation_threshold[row][col]);
}
uprintf("%4d\n", ec_config.rescaled_mode_0_actuation_threshold[row][MATRIX_COLS - 1]);
}
uprintf("\n######################################\n");
uprintf("# Rescaled APC Mode Release Points #\n");
uprintf("######################################\n");
uprintf("Original APC Mode Release Point: %4d\n", ec_config.mode_0_release_threshold);
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS - 1; col++) {
uprintf("%4d,", ec_config.rescaled_mode_0_release_threshold[row][col]);
}
uprintf("%4d\n", ec_config.rescaled_mode_0_release_threshold[row][MATRIX_COLS - 1]);
}
uprintf("\n#######################################################\n");
uprintf("# Rescaled Rapid Trigger Mode Initial Deadzone Offset #\n");
uprintf("#######################################################\n");
uprintf("Original Rapid Trigger Mode Initial Deadzone Offset: %4d\n", ec_config.mode_1_initial_deadzone_offset);
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS - 1; col++) {
uprintf("%4d,", ec_config.rescaled_mode_1_initial_deadzone_offset[row][col]);
}
uprintf("%4d\n", ec_config.rescaled_mode_1_initial_deadzone_offset[row][MATRIX_COLS - 1]);
}
print("\n");
}
// Clear the calibration data
void ec_clear_bottoming_calibration_data(void) {
// Clear the EEPROM data
eeconfig_init_kb();
// Reset the runtime values to the EEPROM values
keyboard_post_init_kb();
uprintf("######################################\n");
uprintf("# Bottoming calibration data cleared #\n");
uprintf("######################################\n");
}
#endif // VIA_ENABLE