mirror of
https://github.com/Keychron/qmk_firmware.git
synced 2024-11-23 17:06:52 +06:00
5e9c078c78
* 3731 bug fix * bug fixes
270 lines
9.6 KiB
C
270 lines
9.6 KiB
C
/* Copyright 2018 Jason Williams (Wilba)
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "is31fl3736.h"
|
|
#include "i2c_master.h"
|
|
#include "wait.h"
|
|
|
|
// This is a 7-bit address, that gets left-shifted and bit 0
|
|
// set to 0 for write, 1 for read (as per I2C protocol)
|
|
// The address will vary depending on your wiring:
|
|
// 00 <-> GND
|
|
// 01 <-> SCL
|
|
// 10 <-> SDA
|
|
// 11 <-> VCC
|
|
// ADDR1 represents A1:A0 of the 7-bit address.
|
|
// ADDR2 represents A3:A2 of the 7-bit address.
|
|
// The result is: 0b101(ADDR2)(ADDR1)
|
|
#define ISSI_ADDR_DEFAULT 0x50
|
|
|
|
#define ISSI_COMMANDREGISTER 0xFD
|
|
#define ISSI_COMMANDREGISTER_WRITELOCK 0xFE
|
|
#define ISSI_INTERRUPTMASKREGISTER 0xF0
|
|
#define ISSI_INTERRUPTSTATUSREGISTER 0xF1
|
|
|
|
#define ISSI_PAGE_LEDCONTROL 0x00 // PG0
|
|
#define ISSI_PAGE_PWM 0x01 // PG1
|
|
#define ISSI_PAGE_AUTOBREATH 0x02 // PG2
|
|
#define ISSI_PAGE_FUNCTION 0x03 // PG3
|
|
|
|
#define ISSI_REG_CONFIGURATION 0x00 // PG3
|
|
#define ISSI_REG_GLOBALCURRENT 0x01 // PG3
|
|
#define ISSI_REG_RESET 0x11 // PG3
|
|
#define ISSI_REG_SWPULLUP 0x0F // PG3
|
|
#define ISSI_REG_CSPULLUP 0x10 // PG3
|
|
|
|
#ifndef ISSI_TIMEOUT
|
|
# define ISSI_TIMEOUT 100
|
|
#endif
|
|
|
|
#ifndef ISSI_PERSISTENCE
|
|
# define ISSI_PERSISTENCE 0
|
|
#endif
|
|
|
|
// Transfer buffer for TWITransmitData()
|
|
uint8_t g_twi_transfer_buffer[20];
|
|
|
|
// These buffers match the IS31FL3736 PWM registers.
|
|
// The control buffers match the PG0 LED On/Off registers.
|
|
// Storing them like this is optimal for I2C transfers to the registers.
|
|
// We could optimize this and take out the unused registers from these
|
|
// buffers and the transfers in IS31FL3736_write_pwm_buffer() but it's
|
|
// probably not worth the extra complexity.
|
|
uint8_t g_pwm_buffer[DRIVER_COUNT][192];
|
|
bool g_pwm_buffer_update_required = false;
|
|
|
|
uint8_t g_led_control_registers[DRIVER_COUNT][24] = {{0}, {0}};
|
|
bool g_led_control_registers_update_required = false;
|
|
|
|
void IS31FL3736_write_register(uint8_t addr, uint8_t reg, uint8_t data) {
|
|
g_twi_transfer_buffer[0] = reg;
|
|
g_twi_transfer_buffer[1] = data;
|
|
|
|
#if ISSI_PERSISTENCE > 0
|
|
for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
|
|
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0) break;
|
|
}
|
|
#else
|
|
i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT);
|
|
#endif
|
|
}
|
|
|
|
void IS31FL3736_write_pwm_buffer(uint8_t addr, uint8_t *pwm_buffer) {
|
|
// assumes PG1 is already selected
|
|
|
|
// transmit PWM registers in 12 transfers of 16 bytes
|
|
// g_twi_transfer_buffer[] is 20 bytes
|
|
|
|
// iterate over the pwm_buffer contents at 16 byte intervals
|
|
for (int i = 0; i < 192; i += 16) {
|
|
g_twi_transfer_buffer[0] = i;
|
|
// copy the data from i to i+15
|
|
// device will auto-increment register for data after the first byte
|
|
// thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer
|
|
for (int j = 0; j < 16; j++) {
|
|
g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j];
|
|
}
|
|
|
|
#if ISSI_PERSISTENCE > 0
|
|
for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
|
|
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) == 0) break;
|
|
}
|
|
#else
|
|
i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void IS31FL3736_init(uint8_t addr) {
|
|
// In order to avoid the LEDs being driven with garbage data
|
|
// in the LED driver's PWM registers, shutdown is enabled last.
|
|
// Set up the mode and other settings, clear the PWM registers,
|
|
// then disable software shutdown.
|
|
|
|
// Unlock the command register.
|
|
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
|
|
|
|
// Select PG0
|
|
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL);
|
|
// Turn off all LEDs.
|
|
for (int i = 0x00; i <= 0x17; i++) {
|
|
IS31FL3736_write_register(addr, i, 0x00);
|
|
}
|
|
|
|
// Unlock the command register.
|
|
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
|
|
|
|
// Select PG1
|
|
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM);
|
|
// Set PWM on all LEDs to 0
|
|
// No need to setup Breath registers to PWM as that is the default.
|
|
for (int i = 0x00; i <= 0xBF; i++) {
|
|
IS31FL3736_write_register(addr, i, 0x00);
|
|
}
|
|
|
|
// Unlock the command register.
|
|
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
|
|
|
|
// Select PG3
|
|
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_FUNCTION);
|
|
// Set global current to maximum.
|
|
IS31FL3736_write_register(addr, ISSI_REG_GLOBALCURRENT, 0xFF);
|
|
// Disable software shutdown.
|
|
IS31FL3736_write_register(addr, ISSI_REG_CONFIGURATION, 0x01);
|
|
|
|
// Wait 10ms to ensure the device has woken up.
|
|
wait_ms(10);
|
|
}
|
|
|
|
void IS31FL3736_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) {
|
|
if (index >= 0 && index < DRIVER_LED_TOTAL) {
|
|
is31_led led = g_is31_leds[index];
|
|
|
|
g_pwm_buffer[led.driver][led.r] = red;
|
|
g_pwm_buffer[led.driver][led.g] = green;
|
|
g_pwm_buffer[led.driver][led.b] = blue;
|
|
g_pwm_buffer_update_required = true;
|
|
}
|
|
}
|
|
|
|
void IS31FL3736_set_color_all(uint8_t red, uint8_t green, uint8_t blue) {
|
|
for (int i = 0; i < DRIVER_LED_TOTAL; i++) {
|
|
IS31FL3736_set_color(i, red, green, blue);
|
|
}
|
|
}
|
|
|
|
void IS31FL3736_set_led_control_register(uint8_t index, bool red, bool green, bool blue) {
|
|
is31_led led = g_is31_leds[index];
|
|
|
|
// IS31FL3733
|
|
// The PWM register for a matrix position (0x00 to 0xBF) can be
|
|
// divided by 8 to get the LED control register (0x00 to 0x17),
|
|
// then mod 8 to get the bit position within that register.
|
|
|
|
// IS31FL3736
|
|
// The PWM register for a matrix position (0x00 to 0xBF) is interleaved, so:
|
|
// A1=0x00 A2=0x02 A3=0x04 A4=0x06 A5=0x08 A6=0x0A A7=0x0C A8=0x0E
|
|
// B1=0x10 B2=0x12 B3=0x14
|
|
// But also, the LED control registers (0x00 to 0x17) are also interleaved, so:
|
|
// A1-A4=0x00 A5-A8=0x01
|
|
// So, the same math applies.
|
|
|
|
uint8_t control_register_r = led.r / 8;
|
|
uint8_t control_register_g = led.g / 8;
|
|
uint8_t control_register_b = led.b / 8;
|
|
|
|
uint8_t bit_r = led.r % 8;
|
|
uint8_t bit_g = led.g % 8;
|
|
uint8_t bit_b = led.b % 8;
|
|
|
|
if (red) {
|
|
g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r);
|
|
} else {
|
|
g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r);
|
|
}
|
|
if (green) {
|
|
g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g);
|
|
} else {
|
|
g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g);
|
|
}
|
|
if (blue) {
|
|
g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b);
|
|
} else {
|
|
g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
|
|
}
|
|
|
|
g_led_control_registers_update_required = true;
|
|
}
|
|
|
|
void IS31FL3736_mono_set_brightness(int index, uint8_t value) {
|
|
if (index >= 0 && index < 96) {
|
|
// Index in range 0..95 -> A1..A8, B1..B8, etc.
|
|
// Map index 0..95 to registers 0x00..0xBE (interleaved)
|
|
uint8_t pwm_register = index * 2;
|
|
g_pwm_buffer[0][pwm_register] = value;
|
|
g_pwm_buffer_update_required = true;
|
|
}
|
|
}
|
|
|
|
void IS31FL3736_mono_set_brightness_all(uint8_t value) {
|
|
for (int i = 0; i < 96; i++) {
|
|
IS31FL3736_mono_set_brightness(i, value);
|
|
}
|
|
}
|
|
|
|
void IS31FL3736_mono_set_led_control_register(uint8_t index, bool enabled) {
|
|
// Index in range 0..95 -> A1..A8, B1..B8, etc.
|
|
|
|
// Map index 0..95 to registers 0x00..0xBE (interleaved)
|
|
uint8_t pwm_register = index * 2;
|
|
// Map register 0x00..0xBE (interleaved) into control register and bit
|
|
uint8_t control_register = pwm_register / 8;
|
|
uint8_t bit = pwm_register % 8;
|
|
|
|
if (enabled) {
|
|
g_led_control_registers[0][control_register] |= (1 << bit);
|
|
} else {
|
|
g_led_control_registers[0][control_register] &= ~(1 << bit);
|
|
}
|
|
|
|
g_led_control_registers_update_required = true;
|
|
}
|
|
|
|
void IS31FL3736_update_pwm_buffers(uint8_t addr1, uint8_t addr2) {
|
|
if (g_pwm_buffer_update_required) {
|
|
// Firstly we need to unlock the command register and select PG1
|
|
IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
|
|
IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM);
|
|
|
|
IS31FL3736_write_pwm_buffer(addr1, g_pwm_buffer[0]);
|
|
// IS31FL3736_write_pwm_buffer(addr2, g_pwm_buffer[1]);
|
|
}
|
|
g_pwm_buffer_update_required = false;
|
|
}
|
|
|
|
void IS31FL3736_update_led_control_registers(uint8_t addr1, uint8_t addr2) {
|
|
if (g_led_control_registers_update_required) {
|
|
// Firstly we need to unlock the command register and select PG0
|
|
IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
|
|
IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL);
|
|
for (int i = 0; i < 24; i++) {
|
|
IS31FL3736_write_register(addr1, i, g_led_control_registers[0][i]);
|
|
// IS31FL3736_write_register(addr2, i, g_led_control_registers[1][i]);
|
|
}
|
|
g_led_control_registers_update_required = false;
|
|
}
|
|
}
|