keychron_qmk_firmware/quantum/audio/audio_avr.c
James Young fced377ac0
2020 May 30 Breaking Changes Update (#9215)
* Branch point for 2020 May 30 Breaking Change

* Migrate `ACTION_LAYER_TOGGLE` to `TG()` (#8954)

* Migrate `ACTION_MODS_ONESHOT` to `OSM()` (#8957)

* Migrate `ACTION_DEFAULT_LAYER_SET` to `DF()` (#8958)

* Migrate `ACTION_LAYER_MODS` to `LM()` (#8959)

* Migrate `ACTION_MODS_TAP_KEY` to `MT()` (#8968)

* Convert V-USB usbdrv to a submodule (#8321)

* Unify Tap Hold functions and documentation (#8348)

* Changing board names to prevent confusion (#8412)

* Move the Keyboardio Model01 to a keyboardio/ subdir (#8499)

* Move spaceman keyboards (#8830)

* Migrate miscellaneous `fn_actions` entries (#8977)

* Migrate `ACTION_MODS_KEY` to chained mod keycodes (#8979)

* Organizing my keyboards (plaid, tartan, ergoinu) (#8537)

* Refactor Lily58 to use split_common (#6260)

* Refactor zinc to use split_common (#7114)

* Add a message if bin/qmk doesn't work (#9000)

* Fix conflicting types for 'tfp_printf' (#8269)

* Fixed RGB_DISABLE_AFTER_TIMEOUT to be seconds based & small internals cleanup (#6480)

* Refactor and updates to TKC1800 code (#8472)

* Switch to qmk forks for everything (#9019)

* audio refactor: replace deprecated PLAY_NOTE_ARRAY (#8484)

* Audio enable corrections (2/3) (#8903)

* Split HHKB to ANSI and JP layouts and Add VIA support for each (#8582)

* Audio enable corrections (Part 4) (#8974)

* Fix typo from PR7114 (#9171)

* Augment future branch Changelogs (#8978)

* Revert "Branch point for 2020 May 30 Breaking Change"
2020-05-30 13:14:59 -07:00

811 lines
25 KiB
C

/* Copyright 2016 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <string.h>
//#include <math.h>
#if defined(__AVR__)
# include <avr/pgmspace.h>
# include <avr/interrupt.h>
# include <avr/io.h>
#endif
#include "print.h"
#include "audio.h"
#include "keymap.h"
#include "wait.h"
#include "eeconfig.h"
#define CPU_PRESCALER 8
// -----------------------------------------------------------------------------
// Timer Abstractions
// -----------------------------------------------------------------------------
// Currently we support timers 1 and 3 used at the sime time, channels A-C,
// pins PB5, PB6, PB7, PC4, PC5, and PC6
#if defined(C6_AUDIO)
# define CPIN_AUDIO
# define CPIN_SET_DIRECTION DDRC |= _BV(PORTC6);
# define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
# define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3A)
# define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3A)
# define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3A1);
# define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3A1) | _BV(COM3A0));
# define TIMER_3_PERIOD ICR3
# define TIMER_3_DUTY_CYCLE OCR3A
# define TIMER3_AUDIO_vect TIMER3_COMPA_vect
#endif
#if defined(C5_AUDIO)
# define CPIN_AUDIO
# define CPIN_SET_DIRECTION DDRC |= _BV(PORTC5);
# define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3B1) | (0 << COM3B0) | (1 << WGM31) | (0 << WGM30);
# define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3B)
# define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3B)
# define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3B1);
# define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3B1) | _BV(COM3B0));
# define TIMER_3_PERIOD ICR3
# define TIMER_3_DUTY_CYCLE OCR3B
# define TIMER3_AUDIO_vect TIMER3_COMPB_vect
#endif
#if defined(C4_AUDIO)
# define CPIN_AUDIO
# define CPIN_SET_DIRECTION DDRC |= _BV(PORTC4);
# define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3C1) | (0 << COM3C0) | (1 << WGM31) | (0 << WGM30);
# define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3C)
# define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3C)
# define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3C1);
# define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3C1) | _BV(COM3C0));
# define TIMER_3_PERIOD ICR3
# define TIMER_3_DUTY_CYCLE OCR3C
# define TIMER3_AUDIO_vect TIMER3_COMPC_vect
#endif
#if defined(B5_AUDIO)
# define BPIN_AUDIO
# define BPIN_SET_DIRECTION DDRB |= _BV(PORTB5);
# define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1A1) | (0 << COM1A0) | (1 << WGM11) | (0 << WGM10);
# define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1A)
# define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1A)
# define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1A1);
# define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1A1) | _BV(COM1A0));
# define TIMER_1_PERIOD ICR1
# define TIMER_1_DUTY_CYCLE OCR1A
# define TIMER1_AUDIO_vect TIMER1_COMPA_vect
#endif
#if defined(B6_AUDIO)
# define BPIN_AUDIO
# define BPIN_SET_DIRECTION DDRB |= _BV(PORTB6);
# define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1B1) | (0 << COM1B0) | (1 << WGM11) | (0 << WGM10);
# define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1B)
# define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1B)
# define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1B1);
# define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1B1) | _BV(COM1B0));
# define TIMER_1_PERIOD ICR1
# define TIMER_1_DUTY_CYCLE OCR1B
# define TIMER1_AUDIO_vect TIMER1_COMPB_vect
#endif
#if defined(B7_AUDIO)
# define BPIN_AUDIO
# define BPIN_SET_DIRECTION DDRB |= _BV(PORTB7);
# define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1C1) | (0 << COM1C0) | (1 << WGM11) | (0 << WGM10);
# define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1C)
# define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1C)
# define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1C1);
# define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1C1) | _BV(COM1C0));
# define TIMER_1_PERIOD ICR1
# define TIMER_1_DUTY_CYCLE OCR1C
# define TIMER1_AUDIO_vect TIMER1_COMPC_vect
#endif
#if !defined(BPIN_AUDIO) && !defined(CPIN_AUDIO)
# error "Audio feature enabled, but no suitable pin selected - see docs/feature_audio.md under the AVR settings for available options."
#endif
// -----------------------------------------------------------------------------
int voices = 0;
int voice_place = 0;
float frequency = 0;
float frequency_alt = 0;
int volume = 0;
long position = 0;
float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
bool sliding = false;
float place = 0;
uint8_t* sample;
uint16_t sample_length = 0;
bool playing_notes = false;
bool playing_note = false;
float note_frequency = 0;
float note_length = 0;
uint8_t note_tempo = TEMPO_DEFAULT;
float note_timbre = TIMBRE_DEFAULT;
uint16_t note_position = 0;
float (*notes_pointer)[][2];
uint16_t notes_count;
bool notes_repeat;
bool note_resting = false;
uint16_t current_note = 0;
uint8_t rest_counter = 0;
#ifdef VIBRATO_ENABLE
float vibrato_counter = 0;
float vibrato_strength = .5;
float vibrato_rate = 0.125;
#endif
float polyphony_rate = 0;
static bool audio_initialized = false;
audio_config_t audio_config;
uint16_t envelope_index = 0;
bool glissando = true;
#ifndef STARTUP_SONG
# define STARTUP_SONG SONG(STARTUP_SOUND)
#endif
#ifndef AUDIO_ON_SONG
# define AUDIO_ON_SONG SONG(AUDIO_ON_SOUND)
#endif
#ifndef AUDIO_OFF_SONG
# define AUDIO_OFF_SONG SONG(AUDIO_OFF_SOUND)
#endif
float startup_song[][2] = STARTUP_SONG;
float audio_on_song[][2] = AUDIO_ON_SONG;
float audio_off_song[][2] = AUDIO_OFF_SONG;
void audio_init() {
// Check EEPROM
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
audio_config.raw = eeconfig_read_audio();
if (!audio_initialized) {
// Set audio ports as output
#ifdef CPIN_AUDIO
CPIN_SET_DIRECTION
DISABLE_AUDIO_COUNTER_3_ISR;
#endif
#ifdef BPIN_AUDIO
BPIN_SET_DIRECTION
DISABLE_AUDIO_COUNTER_1_ISR;
#endif
// TCCR3A / TCCR3B: Timer/Counter #3 Control Registers TCCR3A/TCCR3B, TCCR1A/TCCR1B
// Compare Output Mode (COM3An and COM1An) = 0b00 = Normal port operation
// OC3A -- PC6
// OC3B -- PC5
// OC3C -- PC4
// OC1A -- PB5
// OC1B -- PB6
// OC1C -- PB7
// Waveform Generation Mode (WGM3n) = 0b1110 = Fast PWM Mode 14. Period = ICR3, Duty Cycle OCR3A)
// OCR3A - PC6
// OCR3B - PC5
// OCR3C - PC4
// OCR1A - PB5
// OCR1B - PB6
// OCR1C - PB7
// Clock Select (CS3n) = 0b010 = Clock / 8
#ifdef CPIN_AUDIO
INIT_AUDIO_COUNTER_3
TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30);
TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (440 * CPU_PRESCALER));
TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (440 * CPU_PRESCALER)) * note_timbre);
#endif
#ifdef BPIN_AUDIO
INIT_AUDIO_COUNTER_1
TCCR1B = (1 << WGM13) | (1 << WGM12) | (0 << CS12) | (1 << CS11) | (0 << CS10);
TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (440 * CPU_PRESCALER));
TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (440 * CPU_PRESCALER)) * note_timbre);
#endif
audio_initialized = true;
}
if (audio_config.enable) {
PLAY_SONG(startup_song);
}
}
void stop_all_notes() {
dprintf("audio stop all notes");
if (!audio_initialized) {
audio_init();
}
voices = 0;
#ifdef CPIN_AUDIO
DISABLE_AUDIO_COUNTER_3_ISR;
DISABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
#ifdef BPIN_AUDIO
DISABLE_AUDIO_COUNTER_1_ISR;
DISABLE_AUDIO_COUNTER_1_OUTPUT;
#endif
playing_notes = false;
playing_note = false;
frequency = 0;
frequency_alt = 0;
volume = 0;
for (uint8_t i = 0; i < 8; i++) {
frequencies[i] = 0;
volumes[i] = 0;
}
}
void stop_note(float freq) {
dprintf("audio stop note freq=%d", (int)freq);
if (playing_note) {
if (!audio_initialized) {
audio_init();
}
for (int i = 7; i >= 0; i--) {
if (frequencies[i] == freq) {
frequencies[i] = 0;
volumes[i] = 0;
for (int j = i; (j < 7); j++) {
frequencies[j] = frequencies[j + 1];
frequencies[j + 1] = 0;
volumes[j] = volumes[j + 1];
volumes[j + 1] = 0;
}
break;
}
}
voices--;
if (voices < 0) voices = 0;
if (voice_place >= voices) {
voice_place = 0;
}
if (voices == 0) {
#ifdef CPIN_AUDIO
DISABLE_AUDIO_COUNTER_3_ISR;
DISABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
#ifdef BPIN_AUDIO
DISABLE_AUDIO_COUNTER_1_ISR;
DISABLE_AUDIO_COUNTER_1_OUTPUT;
#endif
frequency = 0;
frequency_alt = 0;
volume = 0;
playing_note = false;
}
}
}
#ifdef VIBRATO_ENABLE
float mod(float a, int b) {
float r = fmod(a, b);
return r < 0 ? r + b : r;
}
float vibrato(float average_freq) {
# ifdef VIBRATO_STRENGTH_ENABLE
float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength);
# else
float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter];
# endif
vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0 / average_freq)), VIBRATO_LUT_LENGTH);
return vibrated_freq;
}
#endif
#ifdef CPIN_AUDIO
ISR(TIMER3_AUDIO_vect) {
float freq;
if (playing_note) {
if (voices > 0) {
# ifdef BPIN_AUDIO
float freq_alt = 0;
if (voices > 1) {
if (polyphony_rate == 0) {
if (glissando) {
if (frequency_alt != 0 && frequency_alt < frequencies[voices - 2] && frequency_alt < frequencies[voices - 2] * pow(2, -440 / frequencies[voices - 2] / 12 / 2)) {
frequency_alt = frequency_alt * pow(2, 440 / frequency_alt / 12 / 2);
} else if (frequency_alt != 0 && frequency_alt > frequencies[voices - 2] && frequency_alt > frequencies[voices - 2] * pow(2, 440 / frequencies[voices - 2] / 12 / 2)) {
frequency_alt = frequency_alt * pow(2, -440 / frequency_alt / 12 / 2);
} else {
frequency_alt = frequencies[voices - 2];
}
} else {
frequency_alt = frequencies[voices - 2];
}
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq_alt = vibrato(frequency_alt);
} else {
freq_alt = frequency_alt;
}
# else
freq_alt = frequency_alt;
# endif
}
if (envelope_index < 65535) {
envelope_index++;
}
freq_alt = voice_envelope(freq_alt);
if (freq_alt < 30.517578125) {
freq_alt = 30.52;
}
TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq_alt * CPU_PRESCALER));
TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq_alt * CPU_PRESCALER)) * note_timbre);
}
# endif
if (polyphony_rate > 0) {
if (voices > 1) {
voice_place %= voices;
if (place++ > (frequencies[voice_place] / polyphony_rate / CPU_PRESCALER)) {
voice_place = (voice_place + 1) % voices;
place = 0.0;
}
}
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(frequencies[voice_place]);
} else {
freq = frequencies[voice_place];
}
# else
freq = frequencies[voice_place];
# endif
} else {
if (glissando) {
if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440 / frequencies[voices - 1] / 12 / 2)) {
frequency = frequency * pow(2, 440 / frequency / 12 / 2);
} else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440 / frequencies[voices - 1] / 12 / 2)) {
frequency = frequency * pow(2, -440 / frequency / 12 / 2);
} else {
frequency = frequencies[voices - 1];
}
} else {
frequency = frequencies[voices - 1];
}
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(frequency);
} else {
freq = frequency;
}
# else
freq = frequency;
# endif
}
if (envelope_index < 65535) {
envelope_index++;
}
freq = voice_envelope(freq);
if (freq < 30.517578125) {
freq = 30.52;
}
TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre);
}
}
if (playing_notes) {
if (note_frequency > 0) {
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(note_frequency);
} else {
freq = note_frequency;
}
# else
freq = note_frequency;
# endif
if (envelope_index < 65535) {
envelope_index++;
}
freq = voice_envelope(freq);
TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre);
} else {
TIMER_3_PERIOD = 0;
TIMER_3_DUTY_CYCLE = 0;
}
note_position++;
bool end_of_note = false;
if (TIMER_3_PERIOD > 0) {
if (!note_resting)
end_of_note = (note_position >= (note_length / TIMER_3_PERIOD * 0xFFFF - 1));
else
end_of_note = (note_position >= (note_length));
} else {
end_of_note = (note_position >= (note_length));
}
if (end_of_note) {
current_note++;
if (current_note >= notes_count) {
if (notes_repeat) {
current_note = 0;
} else {
DISABLE_AUDIO_COUNTER_3_ISR;
DISABLE_AUDIO_COUNTER_3_OUTPUT;
playing_notes = false;
return;
}
}
if (!note_resting) {
note_resting = true;
current_note--;
if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) {
note_frequency = 0;
note_length = 1;
} else {
note_frequency = (*notes_pointer)[current_note][0];
note_length = 1;
}
} else {
note_resting = false;
envelope_index = 0;
note_frequency = (*notes_pointer)[current_note][0];
note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
}
note_position = 0;
}
}
if (!audio_config.enable) {
playing_notes = false;
playing_note = false;
}
}
#endif
#ifdef BPIN_AUDIO
ISR(TIMER1_AUDIO_vect) {
# if defined(BPIN_AUDIO) && !defined(CPIN_AUDIO)
float freq = 0;
if (playing_note) {
if (voices > 0) {
if (polyphony_rate > 0) {
if (voices > 1) {
voice_place %= voices;
if (place++ > (frequencies[voice_place] / polyphony_rate / CPU_PRESCALER)) {
voice_place = (voice_place + 1) % voices;
place = 0.0;
}
}
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(frequencies[voice_place]);
} else {
freq = frequencies[voice_place];
}
# else
freq = frequencies[voice_place];
# endif
} else {
if (glissando) {
if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440 / frequencies[voices - 1] / 12 / 2)) {
frequency = frequency * pow(2, 440 / frequency / 12 / 2);
} else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440 / frequencies[voices - 1] / 12 / 2)) {
frequency = frequency * pow(2, -440 / frequency / 12 / 2);
} else {
frequency = frequencies[voices - 1];
}
} else {
frequency = frequencies[voices - 1];
}
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(frequency);
} else {
freq = frequency;
}
# else
freq = frequency;
# endif
}
if (envelope_index < 65535) {
envelope_index++;
}
freq = voice_envelope(freq);
if (freq < 30.517578125) {
freq = 30.52;
}
TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre);
}
}
if (playing_notes) {
if (note_frequency > 0) {
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(note_frequency);
} else {
freq = note_frequency;
}
# else
freq = note_frequency;
# endif
if (envelope_index < 65535) {
envelope_index++;
}
freq = voice_envelope(freq);
TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre);
} else {
TIMER_1_PERIOD = 0;
TIMER_1_DUTY_CYCLE = 0;
}
note_position++;
bool end_of_note = false;
if (TIMER_1_PERIOD > 0) {
if (!note_resting)
end_of_note = (note_position >= (note_length / TIMER_1_PERIOD * 0xFFFF - 1));
else
end_of_note = (note_position >= (note_length));
} else {
end_of_note = (note_position >= (note_length));
}
if (end_of_note) {
current_note++;
if (current_note >= notes_count) {
if (notes_repeat) {
current_note = 0;
} else {
DISABLE_AUDIO_COUNTER_1_ISR;
DISABLE_AUDIO_COUNTER_1_OUTPUT;
playing_notes = false;
return;
}
}
if (!note_resting) {
note_resting = true;
current_note--;
if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) {
note_frequency = 0;
note_length = 1;
} else {
note_frequency = (*notes_pointer)[current_note][0];
note_length = 1;
}
} else {
note_resting = false;
envelope_index = 0;
note_frequency = (*notes_pointer)[current_note][0];
note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
}
note_position = 0;
}
}
if (!audio_config.enable) {
playing_notes = false;
playing_note = false;
}
# endif
}
#endif
void play_note(float freq, int vol) {
dprintf("audio play note freq=%d vol=%d", (int)freq, vol);
if (!audio_initialized) {
audio_init();
}
if (audio_config.enable && voices < 8) {
#ifdef CPIN_AUDIO
DISABLE_AUDIO_COUNTER_3_ISR;
#endif
#ifdef BPIN_AUDIO
DISABLE_AUDIO_COUNTER_1_ISR;
#endif
// Cancel notes if notes are playing
if (playing_notes) stop_all_notes();
playing_note = true;
envelope_index = 0;
if (freq > 0) {
frequencies[voices] = freq;
volumes[voices] = vol;
voices++;
}
#ifdef CPIN_AUDIO
ENABLE_AUDIO_COUNTER_3_ISR;
ENABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
#ifdef BPIN_AUDIO
# ifdef CPIN_AUDIO
if (voices > 1) {
ENABLE_AUDIO_COUNTER_1_ISR;
ENABLE_AUDIO_COUNTER_1_OUTPUT;
}
# else
ENABLE_AUDIO_COUNTER_1_ISR;
ENABLE_AUDIO_COUNTER_1_OUTPUT;
# endif
#endif
}
}
void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat) {
if (!audio_initialized) {
audio_init();
}
if (audio_config.enable) {
#ifdef CPIN_AUDIO
DISABLE_AUDIO_COUNTER_3_ISR;
#endif
#ifdef BPIN_AUDIO
DISABLE_AUDIO_COUNTER_1_ISR;
#endif
// Cancel note if a note is playing
if (playing_note) stop_all_notes();
playing_notes = true;
notes_pointer = np;
notes_count = n_count;
notes_repeat = n_repeat;
place = 0;
current_note = 0;
note_frequency = (*notes_pointer)[current_note][0];
note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
note_position = 0;
#ifdef CPIN_AUDIO
ENABLE_AUDIO_COUNTER_3_ISR;
ENABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
#ifdef BPIN_AUDIO
# ifndef CPIN_AUDIO
ENABLE_AUDIO_COUNTER_1_ISR;
ENABLE_AUDIO_COUNTER_1_OUTPUT;
# endif
#endif
}
}
bool is_playing_notes(void) { return playing_notes; }
bool is_audio_on(void) { return (audio_config.enable != 0); }
void audio_toggle(void) {
audio_config.enable ^= 1;
eeconfig_update_audio(audio_config.raw);
if (audio_config.enable) audio_on_user();
}
void audio_on(void) {
audio_config.enable = 1;
eeconfig_update_audio(audio_config.raw);
audio_on_user();
PLAY_SONG(audio_on_song);
}
void audio_off(void) {
PLAY_SONG(audio_off_song);
wait_ms(100);
stop_all_notes();
audio_config.enable = 0;
eeconfig_update_audio(audio_config.raw);
}
#ifdef VIBRATO_ENABLE
// Vibrato rate functions
void set_vibrato_rate(float rate) { vibrato_rate = rate; }
void increase_vibrato_rate(float change) { vibrato_rate *= change; }
void decrease_vibrato_rate(float change) { vibrato_rate /= change; }
# ifdef VIBRATO_STRENGTH_ENABLE
void set_vibrato_strength(float strength) { vibrato_strength = strength; }
void increase_vibrato_strength(float change) { vibrato_strength *= change; }
void decrease_vibrato_strength(float change) { vibrato_strength /= change; }
# endif /* VIBRATO_STRENGTH_ENABLE */
#endif /* VIBRATO_ENABLE */
// Polyphony functions
void set_polyphony_rate(float rate) { polyphony_rate = rate; }
void enable_polyphony() { polyphony_rate = 5; }
void disable_polyphony() { polyphony_rate = 0; }
void increase_polyphony_rate(float change) { polyphony_rate *= change; }
void decrease_polyphony_rate(float change) { polyphony_rate /= change; }
// Timbre function
void set_timbre(float timbre) { note_timbre = timbre; }
// Tempo functions
void set_tempo(uint8_t tempo) { note_tempo = tempo; }
void decrease_tempo(uint8_t tempo_change) { note_tempo += tempo_change; }
void increase_tempo(uint8_t tempo_change) {
if (note_tempo - tempo_change < 10) {
note_tempo = 10;
} else {
note_tempo -= tempo_change;
}
}