/* Copyright 2020 Nick Brassel (tzarc) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "spi_master.h" #include "timer.h" static bool spiStarted = false; #if SPI_SELECT_MODE == SPI_SELECT_MODE_NONE static pin_t currentSlavePin; #endif static SPIConfig spiConfig; __attribute__((weak)) void spi_init(void) { static bool is_initialised = false; if (!is_initialised) { is_initialised = true; // Try releasing special pins for a short time gpio_set_pin_input(SPI_SCK_PIN); if (SPI_MOSI_PIN != NO_PIN) { gpio_set_pin_input(SPI_MOSI_PIN); } if (SPI_MISO_PIN != NO_PIN) { gpio_set_pin_input(SPI_MISO_PIN); } chThdSleepMilliseconds(10); #if defined(USE_GPIOV1) palSetPadMode(PAL_PORT(SPI_SCK_PIN), PAL_PAD(SPI_SCK_PIN), SPI_SCK_PAL_MODE); if (SPI_MOSI_PIN != NO_PIN) { palSetPadMode(PAL_PORT(SPI_MOSI_PIN), PAL_PAD(SPI_MOSI_PIN), SPI_MOSI_PAL_MODE); } if (SPI_MISO_PIN != NO_PIN) { palSetPadMode(PAL_PORT(SPI_MISO_PIN), PAL_PAD(SPI_MISO_PIN), SPI_MISO_PAL_MODE); } #else palSetPadMode(PAL_PORT(SPI_SCK_PIN), PAL_PAD(SPI_SCK_PIN), SPI_SCK_FLAGS); if (SPI_MOSI_PIN != NO_PIN) { palSetPadMode(PAL_PORT(SPI_MOSI_PIN), PAL_PAD(SPI_MOSI_PIN), SPI_MOSI_FLAGS); } if (SPI_MISO_PIN != NO_PIN) { palSetPadMode(PAL_PORT(SPI_MISO_PIN), PAL_PAD(SPI_MISO_PIN), SPI_MISO_FLAGS); } #endif spiStop(&SPI_DRIVER); spiStarted = false; } } bool spi_start(pin_t slavePin, bool lsbFirst, uint8_t mode, uint16_t divisor) { #if (SPI_USE_MUTUAL_EXCLUSION == TRUE) spiAcquireBus(&SPI_DRIVER); #endif // (SPI_USE_MUTUAL_EXCLUSION == TRUE) if (spiStarted) { return false; } #if SPI_SELECT_MODE != SPI_SELECT_MODE_NONE if (slavePin == NO_PIN) { return false; } #endif #if !(defined(WB32F3G71xx) || defined(WB32FQ95xx)) uint16_t roundedDivisor = 2; while (roundedDivisor < divisor) { roundedDivisor <<= 1; } if (roundedDivisor < 2 || roundedDivisor > 256) { return false; } #endif #if defined(K20x) || defined(KL2x) spiConfig.tar0 = SPIx_CTARn_FMSZ(7) | SPIx_CTARn_ASC(1); if (lsbFirst) { spiConfig.tar0 |= SPIx_CTARn_LSBFE; } switch (mode) { case 0: break; case 1: spiConfig.tar0 |= SPIx_CTARn_CPHA; break; case 2: spiConfig.tar0 |= SPIx_CTARn_CPOL; break; case 3: spiConfig.tar0 |= SPIx_CTARn_CPHA | SPIx_CTARn_CPOL; break; } switch (roundedDivisor) { case 2: spiConfig.tar0 |= SPIx_CTARn_BR(0); break; case 4: spiConfig.tar0 |= SPIx_CTARn_BR(1); break; case 8: spiConfig.tar0 |= SPIx_CTARn_BR(3); break; case 16: spiConfig.tar0 |= SPIx_CTARn_BR(4); break; case 32: spiConfig.tar0 |= SPIx_CTARn_BR(5); break; case 64: spiConfig.tar0 |= SPIx_CTARn_BR(6); break; case 128: spiConfig.tar0 |= SPIx_CTARn_BR(7); break; case 256: spiConfig.tar0 |= SPIx_CTARn_BR(8); break; } #elif defined(HT32) spiConfig.cr0 = SPI_CR0_SELOEN; spiConfig.cr1 = SPI_CR1_MODE | 8; // 8 bits and in master mode if (lsbFirst) { spiConfig.cr1 |= SPI_CR1_FIRSTBIT; } switch (mode) { case 0: spiConfig.cr1 |= SPI_CR1_FORMAT_MODE0; break; case 1: spiConfig.cr1 |= SPI_CR1_FORMAT_MODE1; break; case 2: spiConfig.cr1 |= SPI_CR1_FORMAT_MODE2; break; case 3: spiConfig.cr1 |= SPI_CR1_FORMAT_MODE3; break; } spiConfig.cpr = (roundedDivisor - 1) >> 1; #elif defined(WB32F3G71xx) || defined(WB32FQ95xx) if (!lsbFirst) { osalDbgAssert(lsbFirst != FALSE, "unsupported lsbFirst"); } if (divisor < 1) { return false; } spiConfig.SPI_BaudRatePrescaler = (divisor << 2); switch (mode) { case 0: spiConfig.SPI_CPHA = SPI_CPHA_1Edge; spiConfig.SPI_CPOL = SPI_CPOL_Low; break; case 1: spiConfig.SPI_CPHA = SPI_CPHA_2Edge; spiConfig.SPI_CPOL = SPI_CPOL_Low; break; case 2: spiConfig.SPI_CPHA = SPI_CPHA_1Edge; spiConfig.SPI_CPOL = SPI_CPOL_High; break; case 3: spiConfig.SPI_CPHA = SPI_CPHA_2Edge; spiConfig.SPI_CPOL = SPI_CPOL_High; break; } #elif defined(MCU_RP) if (lsbFirst) { osalDbgAssert(lsbFirst == false, "RP2040s PrimeCell SPI implementation does not support sending LSB first."); } // Motorola frame format and 8bit transfer data size. spiConfig.SSPCR0 = SPI_SSPCR0_FRF_MOTOROLA | SPI_SSPCR0_DSS_8BIT; // Serial output clock = (ck_sys or ck_peri) / (SSPCPSR->CPSDVSR * (1 + // SSPCR0->SCR)). SCR is always set to zero, as QMK SPI API expects the // passed divisor to be the only value to divide the input clock by. spiConfig.SSPCPSR = roundedDivisor; // Even number from 2 to 254 switch (mode) { case 0: spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPO; // Clock polarity: low spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPH; // Clock phase: sample on first edge break; case 1: spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPO; // Clock polarity: low spiConfig.SSPCR0 |= SPI_SSPCR0_SPH; // Clock phase: sample on second edge transition break; case 2: spiConfig.SSPCR0 |= SPI_SSPCR0_SPO; // Clock polarity: high spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPH; // Clock phase: sample on first edge break; case 3: spiConfig.SSPCR0 |= SPI_SSPCR0_SPO; // Clock polarity: high spiConfig.SSPCR0 |= SPI_SSPCR0_SPH; // Clock phase: sample on second edge transition break; } #else spiConfig.cr1 = 0; if (lsbFirst) { spiConfig.cr1 |= SPI_CR1_LSBFIRST; } switch (mode) { case 0: break; case 1: spiConfig.cr1 |= SPI_CR1_CPHA; break; case 2: spiConfig.cr1 |= SPI_CR1_CPOL; break; case 3: spiConfig.cr1 |= SPI_CR1_CPHA | SPI_CR1_CPOL; break; } switch (roundedDivisor) { case 2: break; case 4: spiConfig.cr1 |= SPI_CR1_BR_0; break; case 8: spiConfig.cr1 |= SPI_CR1_BR_1; break; case 16: spiConfig.cr1 |= SPI_CR1_BR_1 | SPI_CR1_BR_0; break; case 32: spiConfig.cr1 |= SPI_CR1_BR_2; break; case 64: spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_0; break; case 128: spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_1; break; case 256: spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0; break; } #endif spiStarted = true; #if SPI_SELECT_MODE == SPI_SELECT_MODE_NONE currentSlavePin = slavePin; #endif #if SPI_SELECT_MODE == SPI_SELECT_MODE_PAD spiConfig.ssport = PAL_PORT(slavePin); spiConfig.sspad = PAL_PAD(slavePin); gpio_set_pin_output(slavePin); #elif SPI_SELECT_MODE == SPI_SELECT_MODE_NONE if (slavePin != NO_PIN) { gpio_set_pin_output(slavePin); } #else # error "Unsupported SPI_SELECT_MODE" #endif spiStart(&SPI_DRIVER, &spiConfig); spiSelect(&SPI_DRIVER); #if SPI_SELECT_MODE == SPI_SELECT_MODE_NONE if (slavePin != NO_PIN) { gpio_write_pin_low(slavePin); } #endif return true; } spi_status_t spi_write(uint8_t data) { uint8_t rxData; spiExchange(&SPI_DRIVER, 1, &data, &rxData); return rxData; } spi_status_t spi_read(void) { uint8_t data = 0; spiReceive(&SPI_DRIVER, 1, &data); return data; } spi_status_t spi_transmit(const uint8_t *data, uint16_t length) { spiSend(&SPI_DRIVER, length, data); return SPI_STATUS_SUCCESS; } spi_status_t spi_receive(uint8_t *data, uint16_t length) { spiReceive(&SPI_DRIVER, length, data); return SPI_STATUS_SUCCESS; } void spi_stop(void) { if (spiStarted) { #if SPI_SELECT_MODE == SPI_SELECT_MODE_NONE if (currentSlavePin != NO_PIN) { gpio_write_pin_high(currentSlavePin); } #endif spiUnselect(&SPI_DRIVER); spiStop(&SPI_DRIVER); spiStarted = false; } #if (SPI_USE_MUTUAL_EXCLUSION == TRUE) spiReleaseBus(&SPI_DRIVER); #endif // (SPI_USE_MUTUAL_EXCLUSION == TRUE) }