/* Copyright 2021 @ Keychron (https://www.keychron.com) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "ckled2001.h" #include "i2c_master.h" #include "wait.h" #ifndef CKLED2001_TIMEOUT # define CKLED2001_TIMEOUT 100 #endif #ifndef CKLED2001_PERSISTENCE # define CKLED2001_PERSISTENCE 0 #endif #ifndef SCAN_PHASE_CHANNEL # define SCAN_PHASE_CHANNEL MSKPHASE_12CHANNEL #endif // Transfer buffer for TWITransmitData() uint8_t g_twi_transfer_buffer[20]; // These buffers match the CKLED2001 PWM registers. // The control buffers match the PG0 LED On/Off registers. // Storing them like this is optimal for I2C transfers to the registers. // We could optimize this and take out the unused registers from these // buffers and the transfers in CKLED2001_write_pwm_buffer() but it's // probably not worth the extra complexity. uint8_t g_pwm_buffer[DRIVER_COUNT][192]; bool g_pwm_buffer_update_required[DRIVER_COUNT] = {false}; uint8_t g_led_control_registers[DRIVER_COUNT][24] = {0}; bool g_led_control_registers_update_required[DRIVER_COUNT] = {false}; bool CKLED2001_write_register(uint8_t addr, uint8_t reg, uint8_t data) { // If the transaction fails function returns false. g_twi_transfer_buffer[0] = reg; g_twi_transfer_buffer[1] = data; #if CKLED2001_PERSISTENCE > 0 for (uint8_t i = 0; i < CKLED2001_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, CKLED2001_TIMEOUT) != 0) { return false; } } #else if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, CKLED2001_TIMEOUT) != 0) { return false; } #endif return true; } bool CKLED2001_write_pwm_buffer(uint8_t addr, uint8_t *pwm_buffer) { // Assumes PG1 is already selected. // If any of the transactions fails function returns false. // Transmit PWM registers in 12 transfers of 16 bytes. // g_twi_transfer_buffer[] is 20 bytes // Iterate over the pwm_buffer contents at 16 byte intervals. for (int i = 0; i < 192; i += 16) { g_twi_transfer_buffer[0] = i; // Copy the data from i to i+15. // Device will auto-increment register for data after the first byte // Thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer. for (int j = 0; j < 16; j++) { g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j]; } #if CKLED2001_PERSISTENCE > 0 for (uint8_t i = 0; i < CKLED2001_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, CKLED2001_TIMEOUT) != 0) { return false; } } #else if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, CKLED2001_TIMEOUT) != 0) { return false; } #endif } return true; } __attribute__((weak)) void CKLED2001_init(uint8_t addr) { // Select to function page CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, FUNCTION_PAGE); // Setting LED driver to shutdown mode CKLED2001_write_register(addr, CONFIGURATION_REG, MSKSW_SHUT_DOWN_MODE); // Setting internal channel pulldown/pullup CKLED2001_write_register(addr, PDU_REG, MSKSET_CA_CB_CHANNEL); // Select number of scan phase CKLED2001_write_register(addr, SCAN_PHASE_REG, SCAN_PHASE_CHANNEL); // Setting PWM Delay Phase CKLED2001_write_register(addr, SLEW_RATE_CONTROL_MODE1_REG, MSKPWM_DELAY_PHASE_ENABLE); // Setting Driving/Sinking Channel Slew Rate CKLED2001_write_register(addr, SLEW_RATE_CONTROL_MODE2_REG, MSKDRIVING_SINKING_CHHANNEL_SLEWRATE_ENABLE); // Setting Iref CKLED2001_write_register(addr, SOFTWARE_SLEEP_REG, MSKSLEEP_DISABLE); // Set LED CONTROL PAGE (Page 0) CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_CONTROL_PAGE); for (int i = 0; i < LED_CONTROL_ON_OFF_LENGTH; i++) { CKLED2001_write_register(addr, i, 0x00); } // Set PWM PAGE (Page 1) CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_PWM_PAGE); for (int i = 0; i < LED_CURRENT_TUNE_LENGTH; i++) { CKLED2001_write_register(addr, i, 0x00); } // Set CURRENT PAGE (Page 4) CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, CURRENT_TUNE_PAGE); #if defined(LOW_CURRENT_MODE) for (int i = 0; i < LED_CURRENT_TUNE_LENGTH; i++) { switch (i) { case 2: case 5: case 8: case 11: CKLED2001_write_register(addr, i, 0x88); break; default: CKLED2001_write_register(addr, i, 0xA8); } } #else for (int i = 0; i < LED_CURRENT_TUNE_LENGTH; i++) { switch (i) { case 2: case 5: case 8: case 11: CKLED2001_write_register(addr, i, 0xA0); break; default: CKLED2001_write_register(addr, i, 0xFF); } } #endif // Enable LEDs ON/OFF CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_CONTROL_PAGE); for (int i = 0; i < LED_CONTROL_ON_OFF_LENGTH; i++) { CKLED2001_write_register(addr, i, 0xFF); } // Select to function page CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, FUNCTION_PAGE); // Setting LED driver to normal mode CKLED2001_write_register(addr, CONFIGURATION_REG, MSKSW_NORMAL_MODE); } void CKLED2001_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) { ckled2001_led led; if (index >= 0 && index < DRIVER_LED_TOTAL) { memcpy_P(&led, (&g_ckled2001_leds[index]), sizeof(led)); g_pwm_buffer[led.driver][led.r] = red; g_pwm_buffer[led.driver][led.g] = green; g_pwm_buffer[led.driver][led.b] = blue; g_pwm_buffer_update_required[led.driver] = true; } } void CKLED2001_set_color_all(uint8_t red, uint8_t green, uint8_t blue) { for (int i = 0; i < DRIVER_LED_TOTAL; i++) { CKLED2001_set_color(i, red, green, blue); } } void CKLED2001_set_led_control_register(uint8_t index, bool red, bool green, bool blue) { ckled2001_led led; memcpy_P(&led, (&g_ckled2001_leds[index]), sizeof(led)); uint8_t control_register_r = led.r / 8; uint8_t control_register_g = led.g / 8; uint8_t control_register_b = led.b / 8; uint8_t bit_r = led.r % 8; uint8_t bit_g = led.g % 8; uint8_t bit_b = led.b % 8; if (red) { g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r); } else { g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r); } if (green) { g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g); } else { g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g); } if (blue) { g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b); } else { g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b); } g_led_control_registers_update_required[led.driver] = true; } void CKLED2001_update_pwm_buffers(uint8_t addr, uint8_t index) { if (g_pwm_buffer_update_required[index]) { CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_PWM_PAGE); // If any of the transactions fail we risk writing dirty PG0, // refresh page 0 just in case. if (!CKLED2001_write_pwm_buffer(addr, g_pwm_buffer[index])) { g_led_control_registers_update_required[index] = true; } } g_pwm_buffer_update_required[index] = false; } void CKLED2001_update_led_control_registers(uint8_t addr, uint8_t index) { if (g_led_control_registers_update_required[index]) { CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, LED_CONTROL_PAGE); for (int i = 0; i < 24; i++) { CKLED2001_write_register(addr, i, g_led_control_registers[index][i]); } } g_led_control_registers_update_required[index] = false; } void CKLED2001_return_normal(uint8_t addr) { // Select to function page CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, FUNCTION_PAGE); // Setting LED driver to normal mode CKLED2001_write_register(addr, CONFIGURATION_REG, MSKSW_NORMAL_MODE); } void CKLED2001_shutdown(uint8_t addr) { // Select to function page CKLED2001_write_register(addr, CONFIGURE_CMD_PAGE, FUNCTION_PAGE); // Setting LED driver to shutdown mode CKLED2001_write_register(addr, CONFIGURATION_REG, MSKSW_SHUT_DOWN_MODE); // Write SW Sleep Register CKLED2001_write_register(addr, SOFTWARE_SLEEP_REG, MSKSLEEP_ENABLE); }